Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography
Abstract Early diagnosis of ocular diseases improves the understanding of pathophysiology and aids in accurate monitoring and effective treatment. Advanced, multimodal ocular imaging platforms play a crucial role in visualization of ocular components and provide clinicians with a valuable tool for e...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e6c7897db7b4eebb911bfbac7df86b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9e6c7897db7b4eebb911bfbac7df86b0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9e6c7897db7b4eebb911bfbac7df86b02021-12-02T17:51:13ZFunctional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography10.1038/s41598-021-90776-52045-2322https://doaj.org/article/9e6c7897db7b4eebb911bfbac7df86b02021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90776-5https://doaj.org/toc/2045-2322Abstract Early diagnosis of ocular diseases improves the understanding of pathophysiology and aids in accurate monitoring and effective treatment. Advanced, multimodal ocular imaging platforms play a crucial role in visualization of ocular components and provide clinicians with a valuable tool for evaluating various eye diseases. Here, for the first time we present a non-contact, multiwavelength photoacoustic remote sensing (PARS) microscopy and swept-source optical coherence tomography (SS-OCT) for in-vivo functional and structural imaging of the eye. The system provides complementary imaging contrasts of optical absorption and optical scattering, and is used for simultaneous, non-contact, in-vivo imaging of murine eye. Results of vasculature and structural imaging as well as melanin content in the retinal pigment epithelium layer are presented. Multiwavelength PARS microscopy using Stimulated Raman scattering is applied to enable in-vivo, non-contact oxygen saturation estimation in the ocular tissue. The reported work may be a major step towards clinical translation of ophthalmic technologies and has the potential to advance the diagnosis and treatment of ocular diseases.Zohreh HosseinaeeNima AbbasiNicholas PellegrinoLayla KhaliliLyazzat MukhangaliyevaParsin Haji RezaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Zohreh Hosseinaee Nima Abbasi Nicholas Pellegrino Layla Khalili Lyazzat Mukhangaliyeva Parsin Haji Reza Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography |
description |
Abstract Early diagnosis of ocular diseases improves the understanding of pathophysiology and aids in accurate monitoring and effective treatment. Advanced, multimodal ocular imaging platforms play a crucial role in visualization of ocular components and provide clinicians with a valuable tool for evaluating various eye diseases. Here, for the first time we present a non-contact, multiwavelength photoacoustic remote sensing (PARS) microscopy and swept-source optical coherence tomography (SS-OCT) for in-vivo functional and structural imaging of the eye. The system provides complementary imaging contrasts of optical absorption and optical scattering, and is used for simultaneous, non-contact, in-vivo imaging of murine eye. Results of vasculature and structural imaging as well as melanin content in the retinal pigment epithelium layer are presented. Multiwavelength PARS microscopy using Stimulated Raman scattering is applied to enable in-vivo, non-contact oxygen saturation estimation in the ocular tissue. The reported work may be a major step towards clinical translation of ophthalmic technologies and has the potential to advance the diagnosis and treatment of ocular diseases. |
format |
article |
author |
Zohreh Hosseinaee Nima Abbasi Nicholas Pellegrino Layla Khalili Lyazzat Mukhangaliyeva Parsin Haji Reza |
author_facet |
Zohreh Hosseinaee Nima Abbasi Nicholas Pellegrino Layla Khalili Lyazzat Mukhangaliyeva Parsin Haji Reza |
author_sort |
Zohreh Hosseinaee |
title |
Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography |
title_short |
Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography |
title_full |
Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography |
title_fullStr |
Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography |
title_full_unstemmed |
Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography |
title_sort |
functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/9e6c7897db7b4eebb911bfbac7df86b0 |
work_keys_str_mv |
AT zohrehhosseinaee functionalandstructuralophthalmicimagingusingnoncontactmultimodalphotoacousticremotesensingmicroscopyandopticalcoherencetomography AT nimaabbasi functionalandstructuralophthalmicimagingusingnoncontactmultimodalphotoacousticremotesensingmicroscopyandopticalcoherencetomography AT nicholaspellegrino functionalandstructuralophthalmicimagingusingnoncontactmultimodalphotoacousticremotesensingmicroscopyandopticalcoherencetomography AT laylakhalili functionalandstructuralophthalmicimagingusingnoncontactmultimodalphotoacousticremotesensingmicroscopyandopticalcoherencetomography AT lyazzatmukhangaliyeva functionalandstructuralophthalmicimagingusingnoncontactmultimodalphotoacousticremotesensingmicroscopyandopticalcoherencetomography AT parsinhajireza functionalandstructuralophthalmicimagingusingnoncontactmultimodalphotoacousticremotesensingmicroscopyandopticalcoherencetomography |
_version_ |
1718379301590532096 |