The incremental value of computed tomography of COVID-19 pneumonia in predicting ICU admission

Abstract Triage is crucial for patient’s management and estimation of the required intensive care unit (ICU) beds is fundamental for health systems during the COVID-19 pandemic. We assessed whether chest computed tomography (CT) of COVID-19 pneumonia has an incremental role in predicting patient’s a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maurizio Bartolucci, Matteo Benelli, Margherita Betti, Sara Bicchi, Luca Fedeli, Federico Giannelli, Donatella Aquilini, Alessio Baldini, Guglielmo Consales, Massimo Edoardo Di Natale, Pamela Lotti, Letizia Vannucchi, Michele Trezzi, Lorenzo Nicola Mazzoni, Sandro Santini, Roberto Carpi, Daniela Matarrese, Luca Bernardi, Mario Mascalchi, the COVID Working Group
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9e781ab8aa3947e99cd855a85eb8952a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9e781ab8aa3947e99cd855a85eb8952a
record_format dspace
spelling oai:doaj.org-article:9e781ab8aa3947e99cd855a85eb8952a2021-12-02T18:49:21ZThe incremental value of computed tomography of COVID-19 pneumonia in predicting ICU admission10.1038/s41598-021-95114-32045-2322https://doaj.org/article/9e781ab8aa3947e99cd855a85eb8952a2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95114-3https://doaj.org/toc/2045-2322Abstract Triage is crucial for patient’s management and estimation of the required intensive care unit (ICU) beds is fundamental for health systems during the COVID-19 pandemic. We assessed whether chest computed tomography (CT) of COVID-19 pneumonia has an incremental role in predicting patient’s admission to ICU. We performed volumetric and texture analysis of the areas of the affected lung in CT of 115 outpatients with COVID-19 infection presenting to the emergency room with dyspnea and unresponsive hypoxyemia. Admission blood laboratory including lymphocyte count, serum lactate dehydrogenase, D-dimer and C-reactive protein and the ratio between the arterial partial pressure of oxygen and inspired oxygen were collected. By calculating the areas under the receiver-operating characteristic curves (AUC), we compared the performance of blood laboratory-arterial gas analyses features alone and combined with the CT features in two hybrid models (Hybrid radiological and Hybrid radiomics)for predicting ICU admission. Following a machine learning approach, 63 patients were allocated to the training and 52 to the validation set. Twenty-nine (25%) of patients were admitted to ICU. The Hybrid radiological model comprising the lung %consolidation performed significantly (p = 0.04) better in predicting ICU admission in the validation (AUC = 0.82; 95% confidence interval 0.73–0.97) set than the blood laboratory-arterial gas analyses features alone (AUC = 0.71; 95% confidence interval 0.56–0.86). A risk calculator for ICU admission was derived and is available at: https://github.com/cgplab/covidapp . The volume of the consolidated lung in CT of patients with COVID-19 pneumonia has a mild but significant incremental value in predicting ICU admission.Maurizio BartolucciMatteo BenelliMargherita BettiSara BicchiLuca FedeliFederico GiannelliDonatella AquiliniAlessio BaldiniGuglielmo ConsalesMassimo Edoardo Di NatalePamela LottiLetizia VannucchiMichele TrezziLorenzo Nicola MazzoniSandro SantiniRoberto CarpiDaniela MatarreseLuca BernardiMario Mascalchithe COVID Working GroupNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Maurizio Bartolucci
Matteo Benelli
Margherita Betti
Sara Bicchi
Luca Fedeli
Federico Giannelli
Donatella Aquilini
Alessio Baldini
Guglielmo Consales
Massimo Edoardo Di Natale
Pamela Lotti
Letizia Vannucchi
Michele Trezzi
Lorenzo Nicola Mazzoni
Sandro Santini
Roberto Carpi
Daniela Matarrese
Luca Bernardi
Mario Mascalchi
the COVID Working Group
The incremental value of computed tomography of COVID-19 pneumonia in predicting ICU admission
description Abstract Triage is crucial for patient’s management and estimation of the required intensive care unit (ICU) beds is fundamental for health systems during the COVID-19 pandemic. We assessed whether chest computed tomography (CT) of COVID-19 pneumonia has an incremental role in predicting patient’s admission to ICU. We performed volumetric and texture analysis of the areas of the affected lung in CT of 115 outpatients with COVID-19 infection presenting to the emergency room with dyspnea and unresponsive hypoxyemia. Admission blood laboratory including lymphocyte count, serum lactate dehydrogenase, D-dimer and C-reactive protein and the ratio between the arterial partial pressure of oxygen and inspired oxygen were collected. By calculating the areas under the receiver-operating characteristic curves (AUC), we compared the performance of blood laboratory-arterial gas analyses features alone and combined with the CT features in two hybrid models (Hybrid radiological and Hybrid radiomics)for predicting ICU admission. Following a machine learning approach, 63 patients were allocated to the training and 52 to the validation set. Twenty-nine (25%) of patients were admitted to ICU. The Hybrid radiological model comprising the lung %consolidation performed significantly (p = 0.04) better in predicting ICU admission in the validation (AUC = 0.82; 95% confidence interval 0.73–0.97) set than the blood laboratory-arterial gas analyses features alone (AUC = 0.71; 95% confidence interval 0.56–0.86). A risk calculator for ICU admission was derived and is available at: https://github.com/cgplab/covidapp . The volume of the consolidated lung in CT of patients with COVID-19 pneumonia has a mild but significant incremental value in predicting ICU admission.
format article
author Maurizio Bartolucci
Matteo Benelli
Margherita Betti
Sara Bicchi
Luca Fedeli
Federico Giannelli
Donatella Aquilini
Alessio Baldini
Guglielmo Consales
Massimo Edoardo Di Natale
Pamela Lotti
Letizia Vannucchi
Michele Trezzi
Lorenzo Nicola Mazzoni
Sandro Santini
Roberto Carpi
Daniela Matarrese
Luca Bernardi
Mario Mascalchi
the COVID Working Group
author_facet Maurizio Bartolucci
Matteo Benelli
Margherita Betti
Sara Bicchi
Luca Fedeli
Federico Giannelli
Donatella Aquilini
Alessio Baldini
Guglielmo Consales
Massimo Edoardo Di Natale
Pamela Lotti
Letizia Vannucchi
Michele Trezzi
Lorenzo Nicola Mazzoni
Sandro Santini
Roberto Carpi
Daniela Matarrese
Luca Bernardi
Mario Mascalchi
the COVID Working Group
author_sort Maurizio Bartolucci
title The incremental value of computed tomography of COVID-19 pneumonia in predicting ICU admission
title_short The incremental value of computed tomography of COVID-19 pneumonia in predicting ICU admission
title_full The incremental value of computed tomography of COVID-19 pneumonia in predicting ICU admission
title_fullStr The incremental value of computed tomography of COVID-19 pneumonia in predicting ICU admission
title_full_unstemmed The incremental value of computed tomography of COVID-19 pneumonia in predicting ICU admission
title_sort incremental value of computed tomography of covid-19 pneumonia in predicting icu admission
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9e781ab8aa3947e99cd855a85eb8952a
work_keys_str_mv AT mauriziobartolucci theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT matteobenelli theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT margheritabetti theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT sarabicchi theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT lucafedeli theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT federicogiannelli theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT donatellaaquilini theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT alessiobaldini theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT guglielmoconsales theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT massimoedoardodinatale theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT pamelalotti theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT letiziavannucchi theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT micheletrezzi theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT lorenzonicolamazzoni theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT sandrosantini theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT robertocarpi theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT danielamatarrese theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT lucabernardi theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT mariomascalchi theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT thecovidworkinggroup theincrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT mauriziobartolucci incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT matteobenelli incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT margheritabetti incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT sarabicchi incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT lucafedeli incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT federicogiannelli incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT donatellaaquilini incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT alessiobaldini incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT guglielmoconsales incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT massimoedoardodinatale incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT pamelalotti incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT letiziavannucchi incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT micheletrezzi incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT lorenzonicolamazzoni incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT sandrosantini incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT robertocarpi incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT danielamatarrese incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT lucabernardi incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT mariomascalchi incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
AT thecovidworkinggroup incrementalvalueofcomputedtomographyofcovid19pneumoniainpredictingicuadmission
_version_ 1718377578972053504