Determination and benchmarking of 27Al(d,α) and 27Al(d,p) reaction cross sections for energies and angles relevant to NRA

Abstract The cross-sections of deuteron-induced nuclear reactions suitable for ion beam analysis, measured in different laboratories, are often significantly different. In the present work, differential cross-sections of 27Al(d,p) and 27Al(d,α) reactions were measured, and the cross sections benchma...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Salimi, O. Kakuee, S. F. Masoudi, H. Rafi-kheiri, E. Briand, J.-J. Ganem, I. Vickridge
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9e970419ed294dd99f4d49ee483a51f4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The cross-sections of deuteron-induced nuclear reactions suitable for ion beam analysis, measured in different laboratories, are often significantly different. In the present work, differential cross-sections of 27Al(d,p) and 27Al(d,α) reactions were measured, and the cross sections benchmarked with thick target spectra obtained from pure aluminium for the first time in two independent laboratories. The 27Al(d,p) and (d,α) differential cross-sections were measured between 1.4 and 2 MeV at scattering angles of 165°, 150°, and 135° in the VDGT laboratory in Tehran (Iran), and the same measurements for detector angle of 150° were repeated from scratch, including target making, with independent equipment on the SAFIR platform at INSP in Paris (France). The results of these two measurements at 150° are in good agreement, and for the first time a fitted function is proposed to describe the Al-cross sections for which no suitable theoretical expression exists. The obtained differential cross-sections were validated through benchmarking, by fitting with SIMNRA deuteron-induced particle spectra obtained from a high purity bulk Al target at both labs for deuteron incident energies between 1.6 and 2 MeV. The thick target spectra are well-reproduced. The evaluated and benchmarked cross sections have been uploaded to the ion beam analysis nuclear data library database (www-nds.iaea.org/ibandl/).