A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries
Accurate prediction models have become the first goal for aiding pandemic-related decisions. Modeling and predicting the number of new active cases and deaths are important steps for anticipating and controlling COVID-19 outbreaks. The aim of this research was to develop an accurate prediction syste...
Guardado en:
Autores principales: | Theyazn H. H. Aldhyani, Hasan Alkahtani |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9eaa5e46d1c14e5e8c16ac41bbb187db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Bayesian-Deep Learning Model for Estimating COVID-19 Evolution in Spain
por: Stefano Cabras
Publicado: (2021) -
Automated Individual Cattle Identification Using Video Data: A Unified Deep Learning Architecture Approach
por: Yongliang Qiao, et al.
Publicado: (2021) -
National Holidays and Social Mobility Behaviors: Alternatives for Forecasting COVID-19 Deaths in Brazil
por: Dunfrey Pires Aragão, et al.
Publicado: (2021) -
Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
por: Ari Yair Barrera-Animas, et al.
Publicado: (2022) -
Population dynamics of black brotula (Cherublemma emmelas) in deep waters of the Gulf of California
por: Morales-Azpeitia,Rufino, et al.
Publicado: (2018)