Assessment of infiltration models developed using soft computing techniques
In this study, predicting ability of support vector machines (SVM), Gaussian process (GP), artificial neural network (ANN), and Random forests (RF) based regression approaches was tested on the infiltration data of soil samples having different compositions of sand, silt, clay, and fly ash. In addit...
Guardado en:
Autores principales: | Parveen Sihag, Munish Kumar, Balraj Singh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9eae689a5e1c49bb956bd87e72c55468 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhanced oil recovery by nanoparticles flooding: From numerical modeling improvement to machine learning prediction
por: Budoor Alwated, et al.
Publicado: (2021) -
Integrating Multiple Datasets and Machine Learning Algorithms for Satellite-Based Bathymetry in Seaports
por: Zhongqiang Wu, et al.
Publicado: (2021) -
Production of a homogeneous seismic catalog based on machine learning for northeast Egypt
por: Moustafa Sayed S. R., et al.
Publicado: (2021) -
User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine
por: Chen,Fudi, et al.
Publicado: (2015) -
Application of machine learning to predict the outcome of pediatric traumatic brain injury
por: Thara Tunthanathip, et al.
Publicado: (2021)