Methods in predictive techniques for mental health status on social media: a critical review
Abstract Social media is now being used to model mental well-being, and for understanding health outcomes. Computer scientists are now using quantitative techniques to predict the presence of specific mental disorders and symptomatology, such as depression, suicidality, and anxiety. This research pr...
Guardado en:
Autores principales: | Stevie Chancellor, Munmun De Choudhury |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ec6ccee175443fb87125d4dbc61ab45 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Digital biomarker of mental fatigue
por: Vincent Wen-Sheng Tseng, et al.
Publicado: (2021) -
Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach
por: Silvan Hornstein, et al.
Publicado: (2021) -
Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
por: Mike D. Rinderknecht, et al.
Publicado: (2021) -
A machine learning approach predicts future risk to suicidal ideation from social media data
por: Arunima Roy, et al.
Publicado: (2020) -
Generation and evaluation of artificial mental health records for Natural Language Processing
por: Julia Ive, et al.
Publicado: (2020)