Modular machine learning for Alzheimer's disease classification from retinal vasculature
Abstract Alzheimer's disease is the leading cause of dementia. The long progression period in Alzheimer's disease provides a possibility for patients to get early treatment by having routine screenings. However, current clinical diagnostic imaging tools do not meet the specific requirement...
Guardado en:
Autores principales: | Jianqiao Tian, Glenn Smith, Han Guo, Boya Liu, Zehua Pan, Zijie Wang, Shuangyu Xiong, Ruogu Fang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ed03286f8524ac2a3c7cb135a63f12e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantitative analysis of retinal vasculature in normal eyes using ultra-widefield fluorescein angiography
por: Jing-Wen Jiang, et al.
Publicado: (2021) -
Optical coherence tomography angiography (OCTA) of retinal vasculature in patients with post fever retinitis: a qualitative and quantitative analysis
por: Srinivasan Sanjay, et al.
Publicado: (2021) -
Modified pixel level snake using bottom hat transformation for evolution of retinal vasculature map
por: Meenu Garg, et al.
Publicado: (2021) -
Diabetic vascular hyperpermeability: optical coherence tomography angiography and functional loss assessments of relationships among retinal vasculature changes
por: Mitsuru Arima, et al.
Publicado: (2021) -
Modularity design of the bamboo plastic fiber forming machine
por: Thanh Nam Nguyen, et al.
Publicado: (2021)