Spatial Variations and Influencing Factors of River Networks in River Basins of China
Analysis of the spatial variations in river networks and the related influencing factors is crucial for the management and protection of basins. To gain insight into the spatial variations and influencing factors of river networks between large basins, in this study, three river basins from north to...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ed42c1c59d449b199de8284c078b503 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Analysis of the spatial variations in river networks and the related influencing factors is crucial for the management and protection of basins. To gain insight into the spatial variations and influencing factors of river networks between large basins, in this study, three river basins from north to south in China (Songhua River Basin, Yellow River Basin and Pearl River Basin) were selected for investigation. First, based on a digital elevation model, different river networks with six drainage accumulation thresholds of three basins were extracted using ArcGIS. The optimal networks were determined through fitting the relationship between the accumulation threshold and related drainage density. Then, we used two indicators, drainage density and water surface ratio, to characterize the spatial variations of three basins. Finally, Pearson’s correlation coefficients were calculated between those two indicators and natural/human influencing factors. The results showed that drainage density and water surface ratio decreased from north to south in China and were negatively correlated with natural/human influencing factors. Drainage density was more influenced by natural factors than by human factors, while the opposite was true for water surface ratio. These findings may provide some basis for the management and protection of the river network. |
---|