Characterization and Modeling of the Viscoelastic Behavior of Hydrocolloid-Based Films Using Classical and Fractional Rheological Models

Hydrocolloid-based films are a good alternative in the development of biodegradable films due to their properties, such as non-toxicity, functionality, and biodegradability, among others. In this work, films based on hydrocolloids (gellan gum, carrageenan, and guar gum) were formulated, evaluating t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: David Ramirez-Brewer, Oscar Danilo Montoya, Jairo Useche Vivero, Luis García-Zapateiro
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/9ed6e24b9edd45ac8052a1b53134eea9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9ed6e24b9edd45ac8052a1b53134eea9
record_format dspace
spelling oai:doaj.org-article:9ed6e24b9edd45ac8052a1b53134eea92021-11-25T17:31:51ZCharacterization and Modeling of the Viscoelastic Behavior of Hydrocolloid-Based Films Using Classical and Fractional Rheological Models10.3390/fluids61104182311-5521https://doaj.org/article/9ed6e24b9edd45ac8052a1b53134eea92021-11-01T00:00:00Zhttps://www.mdpi.com/2311-5521/6/11/418https://doaj.org/toc/2311-5521Hydrocolloid-based films are a good alternative in the development of biodegradable films due to their properties, such as non-toxicity, functionality, and biodegradability, among others. In this work, films based on hydrocolloids (gellan gum, carrageenan, and guar gum) were formulated, evaluating their dynamic rheological behavior and creep and recovery. Maxwell’s classical and fractional rheological models were implemented to describe its viscoelastic behavior, using the Vortex Search Algorithm for the estimation of the parameters. The hydrocolloid-based films showed a viscoelastic behavior, where the behavior of the storage modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msup><mi mathvariant="normal">G</mi><mo>′</mo></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and loss modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><msup><mi mathvariant="normal">G</mi><mo>″</mo></msup></mrow><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> indicated a greater elastic behavior (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><msup><mi mathvariant="normal">G</mi><mo>′</mo></msup></mrow><mo>></mo><mrow><msup><mi mathvariant="normal">G</mi><mo>″</mo></msup></mrow></mrow></semantics></math></inline-formula>). The Maxwell fractional model with two spring-pots showed an optimal fit of the experimental data of storage modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">G</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>) and loss modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><msup><mi mathvariant="normal">G</mi><mo>″</mo></msup></mrow><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and a creep compliance (J) (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">F</mi><mrow><mi>min</mi></mrow></msub><mo><</mo><mn>0.1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">R</mi><mn>2</mn></msup><mo>></mo><mn>0.98</mn></mrow></semantics></math></inline-formula>). This shows that fractional models are an excellent alternative for describing the dynamic rheological behavior and creep recovery of films. These results show the importance of estimating parameters that allow for the dynamic rheological and creep behaviors of hydrocolloid-based films for applications in the design of active films because they allow us to understand their behavior from a rheological point of view, which can contribute to the design and improvement of products such as food coatings, food packaging, or other applications containing biopolymers.David Ramirez-BrewerOscar Danilo MontoyaJairo Useche ViveroLuis García-ZapateiroMDPI AGarticlefractional rheological modelhydrocolloid filmsmetaheuristic optimizationparameter estimationVortex Search Algorithmviscoelastic behaviorThermodynamicsQC310.15-319Descriptive and experimental mechanicsQC120-168.85ENFluids, Vol 6, Iss 418, p 418 (2021)
institution DOAJ
collection DOAJ
language EN
topic fractional rheological model
hydrocolloid films
metaheuristic optimization
parameter estimation
Vortex Search Algorithm
viscoelastic behavior
Thermodynamics
QC310.15-319
Descriptive and experimental mechanics
QC120-168.85
spellingShingle fractional rheological model
hydrocolloid films
metaheuristic optimization
parameter estimation
Vortex Search Algorithm
viscoelastic behavior
Thermodynamics
QC310.15-319
Descriptive and experimental mechanics
QC120-168.85
David Ramirez-Brewer
Oscar Danilo Montoya
Jairo Useche Vivero
Luis García-Zapateiro
Characterization and Modeling of the Viscoelastic Behavior of Hydrocolloid-Based Films Using Classical and Fractional Rheological Models
description Hydrocolloid-based films are a good alternative in the development of biodegradable films due to their properties, such as non-toxicity, functionality, and biodegradability, among others. In this work, films based on hydrocolloids (gellan gum, carrageenan, and guar gum) were formulated, evaluating their dynamic rheological behavior and creep and recovery. Maxwell’s classical and fractional rheological models were implemented to describe its viscoelastic behavior, using the Vortex Search Algorithm for the estimation of the parameters. The hydrocolloid-based films showed a viscoelastic behavior, where the behavior of the storage modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msup><mi mathvariant="normal">G</mi><mo>′</mo></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and loss modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><msup><mi mathvariant="normal">G</mi><mo>″</mo></msup></mrow><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> indicated a greater elastic behavior (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><msup><mi mathvariant="normal">G</mi><mo>′</mo></msup></mrow><mo>></mo><mrow><msup><mi mathvariant="normal">G</mi><mo>″</mo></msup></mrow></mrow></semantics></math></inline-formula>). The Maxwell fractional model with two spring-pots showed an optimal fit of the experimental data of storage modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">G</mi><mo>′</mo></msup></mrow></semantics></math></inline-formula>) and loss modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><msup><mi mathvariant="normal">G</mi><mo>″</mo></msup></mrow><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and a creep compliance (J) (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">F</mi><mrow><mi>min</mi></mrow></msub><mo><</mo><mn>0.1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">R</mi><mn>2</mn></msup><mo>></mo><mn>0.98</mn></mrow></semantics></math></inline-formula>). This shows that fractional models are an excellent alternative for describing the dynamic rheological behavior and creep recovery of films. These results show the importance of estimating parameters that allow for the dynamic rheological and creep behaviors of hydrocolloid-based films for applications in the design of active films because they allow us to understand their behavior from a rheological point of view, which can contribute to the design and improvement of products such as food coatings, food packaging, or other applications containing biopolymers.
format article
author David Ramirez-Brewer
Oscar Danilo Montoya
Jairo Useche Vivero
Luis García-Zapateiro
author_facet David Ramirez-Brewer
Oscar Danilo Montoya
Jairo Useche Vivero
Luis García-Zapateiro
author_sort David Ramirez-Brewer
title Characterization and Modeling of the Viscoelastic Behavior of Hydrocolloid-Based Films Using Classical and Fractional Rheological Models
title_short Characterization and Modeling of the Viscoelastic Behavior of Hydrocolloid-Based Films Using Classical and Fractional Rheological Models
title_full Characterization and Modeling of the Viscoelastic Behavior of Hydrocolloid-Based Films Using Classical and Fractional Rheological Models
title_fullStr Characterization and Modeling of the Viscoelastic Behavior of Hydrocolloid-Based Films Using Classical and Fractional Rheological Models
title_full_unstemmed Characterization and Modeling of the Viscoelastic Behavior of Hydrocolloid-Based Films Using Classical and Fractional Rheological Models
title_sort characterization and modeling of the viscoelastic behavior of hydrocolloid-based films using classical and fractional rheological models
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/9ed6e24b9edd45ac8052a1b53134eea9
work_keys_str_mv AT davidramirezbrewer characterizationandmodelingoftheviscoelasticbehaviorofhydrocolloidbasedfilmsusingclassicalandfractionalrheologicalmodels
AT oscardanilomontoya characterizationandmodelingoftheviscoelasticbehaviorofhydrocolloidbasedfilmsusingclassicalandfractionalrheologicalmodels
AT jairousechevivero characterizationandmodelingoftheviscoelasticbehaviorofhydrocolloidbasedfilmsusingclassicalandfractionalrheologicalmodels
AT luisgarciazapateiro characterizationandmodelingoftheviscoelasticbehaviorofhydrocolloidbasedfilmsusingclassicalandfractionalrheologicalmodels
_version_ 1718412242213404672