New genes in traditional seed systems: diffusion, detectability and persistence of transgenes in a maize metapopulation.

Gene flow of transgenes into non-target populations is an important biosafety concern. The case of genetically modified (GM) maize in Mexico has been of particular interest because of the country's status as center of origin and landrace diversity. In contrast to maize in the U.S. and Europe, M...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joost van Heerwaarden, Diego Ortega Del Vecchyo, Elena R Alvarez-Buylla, Mauricio R Bellon
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9eef5b275b664bcb8df90872629d209a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Gene flow of transgenes into non-target populations is an important biosafety concern. The case of genetically modified (GM) maize in Mexico has been of particular interest because of the country's status as center of origin and landrace diversity. In contrast to maize in the U.S. and Europe, Mexican landraces form part of an evolving metapopulation in which new genes are subject to evolutionary processes of drift, gene flow and selection. Although these processes are affected by seed management and particularly seed flow, there has been little study into the population genetics of transgenes under traditional seed management. Here, we combine recently compiled data on seed management practices with a spatially explicit population genetic model to evaluate the importance of seed flow as a determinant of the long-term fate of transgenes in traditional seed systems. Seed flow between farmers leads to a much wider diffusion of transgenes than expected by pollen movement alone, but a predominance of seed replacement over seed mixing lowers the probability of detection due to a relative lack of homogenization in spatial frequencies. We find that in spite of the spatial complexities of the modeled system, persistence probabilities under positive selection are estimated quite well by existing theory. Our results have important implications concerning the feasibility of long term transgene monitoring and control in traditional seed systems.