A Note on Derivative of Sine Series with Square Root
Chaundy and Jolliffe proved that if an is a nonnegative, nonincreasing real sequence, then series ∑ansinnx converges uniformly if and only if nan⟶0. The purpose of this paper is to show that if nan is nonincreasing and nan⟶0, then the series fx=∑ansinnx can be differentiated term-by-term on c,d for...
Guardado en:
Autor principal: | Sergiusz Kęska |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9efdff8ff4124245b2f26448144466c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sine Half-Logistic Inverse Rayleigh Distribution: Properties, Estimation, and Applications in Biomedical Data
por: M. Shrahili, et al.
Publicado: (2021) -
An Efficient Algorithm for Ill-Conditioned Separable Nonlinear Least Squares
por: Jiayan Wang, et al.
Publicado: (2021) -
Sine Entropy of Uncertain Random Variables
por: Gang Shi, et al.
Publicado: (2021) -
Retraction Note: New applications of Schrödinger type inequalities to the existence and uniqueness of Schrödingerean equilibrium
por: Jianjie Wang, et al.
Publicado: (2021) -
Solution of Fractional Partial Differential Equations Using Fractional Power Series Method
por: Asif Iqbal Ali, et al.
Publicado: (2021)