Predicting lethal courses in critically ill COVID-19 patients using a machine learning model trained on patients with non-COVID-19 viral pneumonia
Abstract In a pandemic with a novel disease, disease-specific prognosis models are available only with a delay. To bridge the critical early phase, models built for similar diseases might be applied. To test the accuracy of such a knowledge transfer, we investigated how precise lethal courses in cri...
Guardado en:
Autores principales: | Gregor Lichtner, Felix Balzer, Stefan Haufe, Niklas Giesa, Fridtjof Schiefenhövel, Malte Schmieding, Carlo Jurth, Wolfgang Kopp, Altuna Akalin, Stefan J. Schaller, Steffen Weber-Carstens, Claudia Spies, Falk von Dincklage |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f0925fd5b874cefbef161561d71441b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Counseling patients with COVID-19: An experience at dedicated COVID-19 hospital
por: Manjeet Santre, et al.
Publicado: (2021) -
Humoral immune response and lymphocyte levels after complete vaccination against COVID-19 in a cohort of multiple sclerosis patients treated with cladribine tablets
por: Christoph Grothe, et al.
Publicado: (2021) -
Survival of COVID-19 with Multimorbidity Patients
por: E. Bustos-Vázquez, et al.
Publicado: (2021) -
The Impact of COVID-19 on Patients With ADPKD
por: Meherzad Kutky, et al.
Publicado: (2021) -
Viral infiltration of pancreatic islets in patients with COVID-19
por: Charlotte Steenblock, et al.
Publicado: (2021)