Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely
Today, power generation from clean and renewable resources such as wind and solar is of great salience. Smart grid technology efficiently responds to the increasing demand for electric power. Intelligent monitoring, control, and maintenance of wind energy facilities are indispensable to increase the...
Guardado en:
Autores principales: | Mahdi Bahaghighat, Fereshteh Abedini, Qin Xin, Morteza Mohammadi Zanjireh, Seyedali Mirjalili |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f139ab62e694f6c88bf638076f23664 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Small wind generation using complex airfoil turbine
por: Chin E. Lin, et al.
Publicado: (2019) -
Analysis of the Wind Turbine Selection for the Given Wind Conditions
por: Waldemar Kuczyński, et al.
Publicado: (2021) -
Wake Expansion and the Finite Blade Functions for Horizontal-Axis Wind Turbines
por: David Wood
Publicado: (2021) -
The Importance of Wake Meandering on Wind Turbine Fatigue Loads in Wake
por: Jennifer Marie Rinker, et al.
Publicado: (2021) -
Aeroelastic Behavior of a Wind Turbine Blade by a Fluid -Structure Interaction Analysis
por: Mauwafak A. Tawfik, et al.
Publicado: (2013)