Deep learning approaches for challenging species and gender identification of mosquito vectors
Abstract Microscopic observation of mosquito species, which is the basis of morphological identification, is a time-consuming and challenging process, particularly owing to the different skills and experience of public health personnel. We present deep learning models based on the well-known you-onl...
Guardado en:
Autores principales: | Veerayuth Kittichai, Theerakamol Pengsakul, Kemmapon Chumchuen, Yudthana Samung, Patchara Sriwichai, Natthaphop Phatthamolrat, Teerawat Tongloy, Komgrit Jaksukam, Santhad Chuwongin, Siridech Boonsang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f1704ac7cf0410296b933f43d63cd5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Classification for avian malaria parasite Plasmodium gallinaceum blood stages by using deep convolutional neural networks
por: Veerayuth Kittichai, et al.
Publicado: (2021) -
Lipid Interactions Between Flaviviruses and Mosquito Vectors
por: Thomas Vial, et al.
Publicado: (2021) -
Virus-derived DNA drives mosquito vector tolerance to arboviral infection
por: Bertsy Goic, et al.
Publicado: (2016) -
Aedes albopictus mosquito: the main vector of the 2007 Chikungunya outbreak in Gabon.
por: Frédéric Pagès, et al.
Publicado: (2009) -
Potential Mosquito Vectors for Shuni Virus, South Africa, 2014–2018
por: Milehna Mara Guarido, et al.
Publicado: (2021)