Interpretation of T cell states from single-cell transcriptomics data using reference atlases
One challenge of single cell RNA sequencing analysis is how to consistently identify cell subtypes and states across different datasets. Here the authors propose the use of a reference single-cell atlas as a stable system of coordinates to characterize T cell states across studies, diseases and spec...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f2f292884da42c48b6390b29c262e36 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9f2f292884da42c48b6390b29c262e36 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9f2f292884da42c48b6390b29c262e362021-12-02T15:52:23ZInterpretation of T cell states from single-cell transcriptomics data using reference atlases10.1038/s41467-021-23324-42041-1723https://doaj.org/article/9f2f292884da42c48b6390b29c262e362021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23324-4https://doaj.org/toc/2041-1723One challenge of single cell RNA sequencing analysis is how to consistently identify cell subtypes and states across different datasets. Here the authors propose the use of a reference single-cell atlas as a stable system of coordinates to characterize T cell states across studies, diseases and species.Massimo AndreattaJesus Corria-OsorioSören MüllerRafael CubasGeorge CoukosSantiago J. CarmonaNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-19 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Massimo Andreatta Jesus Corria-Osorio Sören Müller Rafael Cubas George Coukos Santiago J. Carmona Interpretation of T cell states from single-cell transcriptomics data using reference atlases |
description |
One challenge of single cell RNA sequencing analysis is how to consistently identify cell subtypes and states across different datasets. Here the authors propose the use of a reference single-cell atlas as a stable system of coordinates to characterize T cell states across studies, diseases and species. |
format |
article |
author |
Massimo Andreatta Jesus Corria-Osorio Sören Müller Rafael Cubas George Coukos Santiago J. Carmona |
author_facet |
Massimo Andreatta Jesus Corria-Osorio Sören Müller Rafael Cubas George Coukos Santiago J. Carmona |
author_sort |
Massimo Andreatta |
title |
Interpretation of T cell states from single-cell transcriptomics data using reference atlases |
title_short |
Interpretation of T cell states from single-cell transcriptomics data using reference atlases |
title_full |
Interpretation of T cell states from single-cell transcriptomics data using reference atlases |
title_fullStr |
Interpretation of T cell states from single-cell transcriptomics data using reference atlases |
title_full_unstemmed |
Interpretation of T cell states from single-cell transcriptomics data using reference atlases |
title_sort |
interpretation of t cell states from single-cell transcriptomics data using reference atlases |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/9f2f292884da42c48b6390b29c262e36 |
work_keys_str_mv |
AT massimoandreatta interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases AT jesuscorriaosorio interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases AT sorenmuller interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases AT rafaelcubas interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases AT georgecoukos interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases AT santiagojcarmona interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases |
_version_ |
1718385588362543104 |