Interpretation of T cell states from single-cell transcriptomics data using reference atlases

One challenge of single cell RNA sequencing analysis is how to consistently identify cell subtypes and states across different datasets. Here the authors propose the use of a reference single-cell atlas as a stable system of coordinates to characterize T cell states across studies, diseases and spec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Massimo Andreatta, Jesus Corria-Osorio, Sören Müller, Rafael Cubas, George Coukos, Santiago J. Carmona
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/9f2f292884da42c48b6390b29c262e36
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9f2f292884da42c48b6390b29c262e36
record_format dspace
spelling oai:doaj.org-article:9f2f292884da42c48b6390b29c262e362021-12-02T15:52:23ZInterpretation of T cell states from single-cell transcriptomics data using reference atlases10.1038/s41467-021-23324-42041-1723https://doaj.org/article/9f2f292884da42c48b6390b29c262e362021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23324-4https://doaj.org/toc/2041-1723One challenge of single cell RNA sequencing analysis is how to consistently identify cell subtypes and states across different datasets. Here the authors propose the use of a reference single-cell atlas as a stable system of coordinates to characterize T cell states across studies, diseases and species.Massimo AndreattaJesus Corria-OsorioSören MüllerRafael CubasGeorge CoukosSantiago J. CarmonaNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-19 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Massimo Andreatta
Jesus Corria-Osorio
Sören Müller
Rafael Cubas
George Coukos
Santiago J. Carmona
Interpretation of T cell states from single-cell transcriptomics data using reference atlases
description One challenge of single cell RNA sequencing analysis is how to consistently identify cell subtypes and states across different datasets. Here the authors propose the use of a reference single-cell atlas as a stable system of coordinates to characterize T cell states across studies, diseases and species.
format article
author Massimo Andreatta
Jesus Corria-Osorio
Sören Müller
Rafael Cubas
George Coukos
Santiago J. Carmona
author_facet Massimo Andreatta
Jesus Corria-Osorio
Sören Müller
Rafael Cubas
George Coukos
Santiago J. Carmona
author_sort Massimo Andreatta
title Interpretation of T cell states from single-cell transcriptomics data using reference atlases
title_short Interpretation of T cell states from single-cell transcriptomics data using reference atlases
title_full Interpretation of T cell states from single-cell transcriptomics data using reference atlases
title_fullStr Interpretation of T cell states from single-cell transcriptomics data using reference atlases
title_full_unstemmed Interpretation of T cell states from single-cell transcriptomics data using reference atlases
title_sort interpretation of t cell states from single-cell transcriptomics data using reference atlases
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9f2f292884da42c48b6390b29c262e36
work_keys_str_mv AT massimoandreatta interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases
AT jesuscorriaosorio interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases
AT sorenmuller interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases
AT rafaelcubas interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases
AT georgecoukos interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases
AT santiagojcarmona interpretationoftcellstatesfromsinglecelltranscriptomicsdatausingreferenceatlases
_version_ 1718385588362543104