Interpretation of T cell states from single-cell transcriptomics data using reference atlases
One challenge of single cell RNA sequencing analysis is how to consistently identify cell subtypes and states across different datasets. Here the authors propose the use of a reference single-cell atlas as a stable system of coordinates to characterize T cell states across studies, diseases and spec...
Guardado en:
Autores principales: | Massimo Andreatta, Jesus Corria-Osorio, Sören Müller, Rafael Cubas, George Coukos, Santiago J. Carmona |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f2f292884da42c48b6390b29c262e36 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient and precise single-cell reference atlas mapping with Symphony
por: Joyce B. Kang, et al.
Publicado: (2021) -
An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics
por: Ilias Angelidis, et al.
Publicado: (2019) -
A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion
por: Carla A. Gonçalves, et al.
Publicado: (2021) -
Inference of differentiation time for single cell transcriptomes using cell population reference data
por: Na Sun, et al.
Publicado: (2017) -
Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration
por: Madhvi Menon, et al.
Publicado: (2019)