NeuroMem: Analog Graphene-Based Resistive Memory for Artificial Neural Networks
Abstract Artificial Intelligence (AI) at the edge has become a hot subject of the recent technology-minded publications. The challenges related to IoT nodes gave rise to research on efficient hardware-based accelerators. In this context, analog memristor devices are crucial elements to efficiently p...
Guardado en:
Autores principales: | Heba Abunahla, Yasmin Halawani, Anas Alazzam, Baker Mohammad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f317778f3d04fb5badbe463b2cb6632 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ResMem-Net: memory based deep CNN for image memorability estimation
por: Arockia Praveen, et al.
Publicado: (2021) -
MemBox: Shared Memory Device for Memory-Centric Computing Applicable to Deep Learning Problems
por: Yongseok Choi, et al.
Publicado: (2021) -
Capacitive neural network with neuro-transistors
por: Zhongrui Wang, et al.
Publicado: (2018) -
Is the link from working memory to analogy causal? No analogy improvements following working memory training gains.
por: J Elizabeth Richey, et al.
Publicado: (2014) -
Analog content-addressable memories with memristors
por: Can Li, et al.
Publicado: (2020)