Tripartite entropic uncertainty relation under phase decoherence

Abstract We formulate the tripartite entropic uncertainty relation and predict its lower bound in a three-qubit Heisenberg XXZ spin chain when measuring an arbitrary pair of incompatible observables on one qubit while the other two are served as quantum memories. Our study reveals that the entanglem...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: R. A. Abdelghany, A.-B. A. Mohamed, M. Tammam, Watson Kuo, H. Eleuch
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9f350cd9daff4d558f91a417f8d7fd4a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9f350cd9daff4d558f91a417f8d7fd4a
record_format dspace
spelling oai:doaj.org-article:9f350cd9daff4d558f91a417f8d7fd4a2021-12-02T15:02:40ZTripartite entropic uncertainty relation under phase decoherence10.1038/s41598-021-90689-32045-2322https://doaj.org/article/9f350cd9daff4d558f91a417f8d7fd4a2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90689-3https://doaj.org/toc/2045-2322Abstract We formulate the tripartite entropic uncertainty relation and predict its lower bound in a three-qubit Heisenberg XXZ spin chain when measuring an arbitrary pair of incompatible observables on one qubit while the other two are served as quantum memories. Our study reveals that the entanglement between the nearest neighbors plays an important role in reducing the uncertainty in measurement outcomes. In addition we have shown that the Dolatkhah’s lower bound (Phys Rev A 102(5):052227, 2020) is tighter than that of Ming (Phys Rev A 102(01):012206, 2020) and their dynamics under phase decoherence depends on the choice of the observable pair. In the absence of phase decoherence, Ming’s lower bound is time-invariant regardless the chosen observable pair, while Dolatkhah’s lower bound is perfectly identical with the tripartite uncertainty with a specific choice of pair.R. A. AbdelghanyA.-B. A. MohamedM. TammamWatson KuoH. EleuchNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
R. A. Abdelghany
A.-B. A. Mohamed
M. Tammam
Watson Kuo
H. Eleuch
Tripartite entropic uncertainty relation under phase decoherence
description Abstract We formulate the tripartite entropic uncertainty relation and predict its lower bound in a three-qubit Heisenberg XXZ spin chain when measuring an arbitrary pair of incompatible observables on one qubit while the other two are served as quantum memories. Our study reveals that the entanglement between the nearest neighbors plays an important role in reducing the uncertainty in measurement outcomes. In addition we have shown that the Dolatkhah’s lower bound (Phys Rev A 102(5):052227, 2020) is tighter than that of Ming (Phys Rev A 102(01):012206, 2020) and their dynamics under phase decoherence depends on the choice of the observable pair. In the absence of phase decoherence, Ming’s lower bound is time-invariant regardless the chosen observable pair, while Dolatkhah’s lower bound is perfectly identical with the tripartite uncertainty with a specific choice of pair.
format article
author R. A. Abdelghany
A.-B. A. Mohamed
M. Tammam
Watson Kuo
H. Eleuch
author_facet R. A. Abdelghany
A.-B. A. Mohamed
M. Tammam
Watson Kuo
H. Eleuch
author_sort R. A. Abdelghany
title Tripartite entropic uncertainty relation under phase decoherence
title_short Tripartite entropic uncertainty relation under phase decoherence
title_full Tripartite entropic uncertainty relation under phase decoherence
title_fullStr Tripartite entropic uncertainty relation under phase decoherence
title_full_unstemmed Tripartite entropic uncertainty relation under phase decoherence
title_sort tripartite entropic uncertainty relation under phase decoherence
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9f350cd9daff4d558f91a417f8d7fd4a
work_keys_str_mv AT raabdelghany tripartiteentropicuncertaintyrelationunderphasedecoherence
AT abamohamed tripartiteentropicuncertaintyrelationunderphasedecoherence
AT mtammam tripartiteentropicuncertaintyrelationunderphasedecoherence
AT watsonkuo tripartiteentropicuncertaintyrelationunderphasedecoherence
AT heleuch tripartiteentropicuncertaintyrelationunderphasedecoherence
_version_ 1718389093211045888