Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model
Abstract Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc....
Guardado en:
Autores principales: | Zhongyi Han, Benzheng Wei, Yuanjie Zheng, Yilong Yin, Kejian Li, Shuo Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f36355affc84a4c955336532a56765f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research Progress of Cancer Classification Based on Deep Learning and Histopathological Images
por: YAN Rui, et al.
Publicado: (2021) -
Dynamic Learning Rate in Deep CNN Model for Metastasis Detection and Classification of Histopathology Images
por: Anil Johny, et al.
Publicado: (2021) -
Impact of a deep learning assistant on the histopathologic classification of liver cancer
por: Amirhossein Kiani, et al.
Publicado: (2020) -
A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images
por: Anabia Sohail, et al.
Publicado: (2021) -
Integrative multiomics-histopathology analysis for breast cancer classification
por: Yasha Ektefaie, et al.
Publicado: (2021)