Crossing the Reality Gap: A Survey on Sim-to-Real Transferability of Robot Controllers in Reinforcement Learning
The growing demand for robots able to act autonomously in complex scenarios has widely accelerated the introduction of Reinforcement Learning (RL) in robots control applications. However, the <italic>trial and error</italic> intrinsic nature of RL may result in long training time on real...
Guardado en:
Autores principales: | Erica Salvato, Gianfranco Fenu, Eric Medvet, Felice Andrea Pellegrino |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f38aed8c13146a8bbfadadf1817d86b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training
por: Musong Lin, et al.
Publicado: (2021) -
Robust assembly sequence generation in a Human-Robot Collaborative workcell by reinforcement learning
por: Antonelli Dario, et al.
Publicado: (2021) -
Robot Evolution: Ethical Concerns
por: Ágoston E. Eiben, et al.
Publicado: (2021) -
Evaluation of carbon fiber reinforced polymer – CFRP – machining by applying industrial robots
por: Grisol de Melo Ever, et al.
Publicado: (2021) -
Visualizing Antimicrobials in Bacterial Biofilms: Three-Dimensional Biochemical Imaging Using TOF-SIMS
por: Sarah K. Davies, et al.
Publicado: (2017)