Smartphone app for non-invasive detection of anemia using only patient-sourced photos

Anemia has a global prevalence of over 2 billion people and is diagnosed via blood-based laboratory test. Here the authors describe a smartphone app that can estimate hemoglobin levels and detect anemia by analyzing pictures of fingernail beds taken with a smartphone and without the need of any exte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Robert G. Mannino, David R. Myers, Erika A. Tyburski, Christina Caruso, Jeanne Boudreaux, Traci Leong, G. D. Clifford, Wilbur A. Lam
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/9f3b81595f9348aaadb5c489593f36b8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9f3b81595f9348aaadb5c489593f36b8
record_format dspace
spelling oai:doaj.org-article:9f3b81595f9348aaadb5c489593f36b82021-12-02T17:32:45ZSmartphone app for non-invasive detection of anemia using only patient-sourced photos10.1038/s41467-018-07262-22041-1723https://doaj.org/article/9f3b81595f9348aaadb5c489593f36b82018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07262-2https://doaj.org/toc/2041-1723Anemia has a global prevalence of over 2 billion people and is diagnosed via blood-based laboratory test. Here the authors describe a smartphone app that can estimate hemoglobin levels and detect anemia by analyzing pictures of fingernail beds taken with a smartphone and without the need of any external equipment.Robert G. ManninoDavid R. MyersErika A. TyburskiChristina CarusoJeanne BoudreauxTraci LeongG. D. CliffordWilbur A. LamNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Robert G. Mannino
David R. Myers
Erika A. Tyburski
Christina Caruso
Jeanne Boudreaux
Traci Leong
G. D. Clifford
Wilbur A. Lam
Smartphone app for non-invasive detection of anemia using only patient-sourced photos
description Anemia has a global prevalence of over 2 billion people and is diagnosed via blood-based laboratory test. Here the authors describe a smartphone app that can estimate hemoglobin levels and detect anemia by analyzing pictures of fingernail beds taken with a smartphone and without the need of any external equipment.
format article
author Robert G. Mannino
David R. Myers
Erika A. Tyburski
Christina Caruso
Jeanne Boudreaux
Traci Leong
G. D. Clifford
Wilbur A. Lam
author_facet Robert G. Mannino
David R. Myers
Erika A. Tyburski
Christina Caruso
Jeanne Boudreaux
Traci Leong
G. D. Clifford
Wilbur A. Lam
author_sort Robert G. Mannino
title Smartphone app for non-invasive detection of anemia using only patient-sourced photos
title_short Smartphone app for non-invasive detection of anemia using only patient-sourced photos
title_full Smartphone app for non-invasive detection of anemia using only patient-sourced photos
title_fullStr Smartphone app for non-invasive detection of anemia using only patient-sourced photos
title_full_unstemmed Smartphone app for non-invasive detection of anemia using only patient-sourced photos
title_sort smartphone app for non-invasive detection of anemia using only patient-sourced photos
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/9f3b81595f9348aaadb5c489593f36b8
work_keys_str_mv AT robertgmannino smartphoneappfornoninvasivedetectionofanemiausingonlypatientsourcedphotos
AT davidrmyers smartphoneappfornoninvasivedetectionofanemiausingonlypatientsourcedphotos
AT erikaatyburski smartphoneappfornoninvasivedetectionofanemiausingonlypatientsourcedphotos
AT christinacaruso smartphoneappfornoninvasivedetectionofanemiausingonlypatientsourcedphotos
AT jeanneboudreaux smartphoneappfornoninvasivedetectionofanemiausingonlypatientsourcedphotos
AT tracileong smartphoneappfornoninvasivedetectionofanemiausingonlypatientsourcedphotos
AT gdclifford smartphoneappfornoninvasivedetectionofanemiausingonlypatientsourcedphotos
AT wilburalam smartphoneappfornoninvasivedetectionofanemiausingonlypatientsourcedphotos
_version_ 1718380205263814656