Protein design and variant prediction using autoregressive generative models

The ability to design functional sequences is central to protein engineering and biotherapeutics. Here the authors introduce a deep generative alignment-free model for sequence design applied to highly variable regions and design and test a diverse nanobody library with improved properties for selec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jung-Eun Shin, Adam J. Riesselman, Aaron W. Kollasch, Conor McMahon, Elana Simon, Chris Sander, Aashish Manglik, Andrew C. Kruse, Debora S. Marks
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/9f71edbc554b43bcb6739269e59cc88c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9f71edbc554b43bcb6739269e59cc88c
record_format dspace
spelling oai:doaj.org-article:9f71edbc554b43bcb6739269e59cc88c2021-12-02T17:33:34ZProtein design and variant prediction using autoregressive generative models10.1038/s41467-021-22732-w2041-1723https://doaj.org/article/9f71edbc554b43bcb6739269e59cc88c2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22732-whttps://doaj.org/toc/2041-1723The ability to design functional sequences is central to protein engineering and biotherapeutics. Here the authors introduce a deep generative alignment-free model for sequence design applied to highly variable regions and design and test a diverse nanobody library with improved properties for selection experiments.Jung-Eun ShinAdam J. RiesselmanAaron W. KollaschConor McMahonElana SimonChris SanderAashish ManglikAndrew C. KruseDebora S. MarksNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jung-Eun Shin
Adam J. Riesselman
Aaron W. Kollasch
Conor McMahon
Elana Simon
Chris Sander
Aashish Manglik
Andrew C. Kruse
Debora S. Marks
Protein design and variant prediction using autoregressive generative models
description The ability to design functional sequences is central to protein engineering and biotherapeutics. Here the authors introduce a deep generative alignment-free model for sequence design applied to highly variable regions and design and test a diverse nanobody library with improved properties for selection experiments.
format article
author Jung-Eun Shin
Adam J. Riesselman
Aaron W. Kollasch
Conor McMahon
Elana Simon
Chris Sander
Aashish Manglik
Andrew C. Kruse
Debora S. Marks
author_facet Jung-Eun Shin
Adam J. Riesselman
Aaron W. Kollasch
Conor McMahon
Elana Simon
Chris Sander
Aashish Manglik
Andrew C. Kruse
Debora S. Marks
author_sort Jung-Eun Shin
title Protein design and variant prediction using autoregressive generative models
title_short Protein design and variant prediction using autoregressive generative models
title_full Protein design and variant prediction using autoregressive generative models
title_fullStr Protein design and variant prediction using autoregressive generative models
title_full_unstemmed Protein design and variant prediction using autoregressive generative models
title_sort protein design and variant prediction using autoregressive generative models
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9f71edbc554b43bcb6739269e59cc88c
work_keys_str_mv AT jungeunshin proteindesignandvariantpredictionusingautoregressivegenerativemodels
AT adamjriesselman proteindesignandvariantpredictionusingautoregressivegenerativemodels
AT aaronwkollasch proteindesignandvariantpredictionusingautoregressivegenerativemodels
AT conormcmahon proteindesignandvariantpredictionusingautoregressivegenerativemodels
AT elanasimon proteindesignandvariantpredictionusingautoregressivegenerativemodels
AT chrissander proteindesignandvariantpredictionusingautoregressivegenerativemodels
AT aashishmanglik proteindesignandvariantpredictionusingautoregressivegenerativemodels
AT andrewckruse proteindesignandvariantpredictionusingautoregressivegenerativemodels
AT deborasmarks proteindesignandvariantpredictionusingautoregressivegenerativemodels
_version_ 1718379957048049664