Protein design and variant prediction using autoregressive generative models
The ability to design functional sequences is central to protein engineering and biotherapeutics. Here the authors introduce a deep generative alignment-free model for sequence design applied to highly variable regions and design and test a diverse nanobody library with improved properties for selec...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f71edbc554b43bcb6739269e59cc88c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9f71edbc554b43bcb6739269e59cc88c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9f71edbc554b43bcb6739269e59cc88c2021-12-02T17:33:34ZProtein design and variant prediction using autoregressive generative models10.1038/s41467-021-22732-w2041-1723https://doaj.org/article/9f71edbc554b43bcb6739269e59cc88c2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22732-whttps://doaj.org/toc/2041-1723The ability to design functional sequences is central to protein engineering and biotherapeutics. Here the authors introduce a deep generative alignment-free model for sequence design applied to highly variable regions and design and test a diverse nanobody library with improved properties for selection experiments.Jung-Eun ShinAdam J. RiesselmanAaron W. KollaschConor McMahonElana SimonChris SanderAashish ManglikAndrew C. KruseDebora S. MarksNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jung-Eun Shin Adam J. Riesselman Aaron W. Kollasch Conor McMahon Elana Simon Chris Sander Aashish Manglik Andrew C. Kruse Debora S. Marks Protein design and variant prediction using autoregressive generative models |
description |
The ability to design functional sequences is central to protein engineering and biotherapeutics. Here the authors introduce a deep generative alignment-free model for sequence design applied to highly variable regions and design and test a diverse nanobody library with improved properties for selection experiments. |
format |
article |
author |
Jung-Eun Shin Adam J. Riesselman Aaron W. Kollasch Conor McMahon Elana Simon Chris Sander Aashish Manglik Andrew C. Kruse Debora S. Marks |
author_facet |
Jung-Eun Shin Adam J. Riesselman Aaron W. Kollasch Conor McMahon Elana Simon Chris Sander Aashish Manglik Andrew C. Kruse Debora S. Marks |
author_sort |
Jung-Eun Shin |
title |
Protein design and variant prediction using autoregressive generative models |
title_short |
Protein design and variant prediction using autoregressive generative models |
title_full |
Protein design and variant prediction using autoregressive generative models |
title_fullStr |
Protein design and variant prediction using autoregressive generative models |
title_full_unstemmed |
Protein design and variant prediction using autoregressive generative models |
title_sort |
protein design and variant prediction using autoregressive generative models |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/9f71edbc554b43bcb6739269e59cc88c |
work_keys_str_mv |
AT jungeunshin proteindesignandvariantpredictionusingautoregressivegenerativemodels AT adamjriesselman proteindesignandvariantpredictionusingautoregressivegenerativemodels AT aaronwkollasch proteindesignandvariantpredictionusingautoregressivegenerativemodels AT conormcmahon proteindesignandvariantpredictionusingautoregressivegenerativemodels AT elanasimon proteindesignandvariantpredictionusingautoregressivegenerativemodels AT chrissander proteindesignandvariantpredictionusingautoregressivegenerativemodels AT aashishmanglik proteindesignandvariantpredictionusingautoregressivegenerativemodels AT andrewckruse proteindesignandvariantpredictionusingautoregressivegenerativemodels AT deborasmarks proteindesignandvariantpredictionusingautoregressivegenerativemodels |
_version_ |
1718379957048049664 |