Protein design and variant prediction using autoregressive generative models
The ability to design functional sequences is central to protein engineering and biotherapeutics. Here the authors introduce a deep generative alignment-free model for sequence design applied to highly variable regions and design and test a diverse nanobody library with improved properties for selec...
Guardado en:
Autores principales: | Jung-Eun Shin, Adam J. Riesselman, Aaron W. Kollasch, Conor McMahon, Elana Simon, Chris Sander, Aashish Manglik, Andrew C. Kruse, Debora S. Marks |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f71edbc554b43bcb6739269e59cc88c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient generative modeling of protein sequences using simple autoregressive models
por: Jeanne Trinquier, et al.
Publicado: (2021) -
A network autoregressive model with GARCH effects and its applications.
por: Shih-Feng Huang, et al.
Publicado: (2021) -
An Empirical Study of Carbon Emission Impact Factors Based on the Vector Autoregression Model
por: Wei Fan, et al.
Publicado: (2021) -
External Debt and Economic Growth in Niger: a Vector Autoregression and Variance Decomposition Analysis
por: Oumarou Issoufou
Publicado: (2021) -
A Nonlinear Autoregressive Distributed Lag (NARDL) Analysis of the FTSE and S&P500 Indexes
por: David E. Allen, et al.
Publicado: (2021)