Protein design and variant prediction using autoregressive generative models

The ability to design functional sequences is central to protein engineering and biotherapeutics. Here the authors introduce a deep generative alignment-free model for sequence design applied to highly variable regions and design and test a diverse nanobody library with improved properties for selec...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Jung-Eun Shin, Adam J. Riesselman, Aaron W. Kollasch, Conor McMahon, Elana Simon, Chris Sander, Aashish Manglik, Andrew C. Kruse, Debora S. Marks
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/9f71edbc554b43bcb6739269e59cc88c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!