Computationally Efficient Modelling of Stochastic Spatio-Temporal Dynamics in Biomolecular Networks
Abstract Measurement techniques in biology are now able to provide data on the trajectories of multiple individual molecules simultaneously, motivating the development of techniques for the stochastic spatio-temporal modelling of biomolecular networks. However, standard approaches based on solving s...
Enregistré dans:
Auteurs principaux: | Jongrae Kim, Mathias Foo, Declan G. Bates |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9f77f51e347544e5b1b8246289f35554 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Emergent Dynamics and Spatio Temporal Patterns on Multiplex Neuronal Networks
par: Umesh Kumar Verma, et autres
Publié: (2021) -
Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.
par: Lars Buesing, et autres
Publié: (2011) -
Numerical model of the spatio-temporal dynamics in a water strider group
par: Alexander Kovalev, et autres
Publié: (2021) -
MOTION LEARNING USING SPATIO-TEMPORAL NEURAL NETWORK
par: Nooraini Yusoff, et autres
Publié: (2020) -
Industrial Efficiency Algorithm Based on Spatio-Temporal-Data-Driven
par: Hongqu Lv, et autres
Publié: (2021)