Research on the Application of Reinforcement Learning Algorithm in Decision Support of Beyond-Visual-Range Air Combat
In order to solve problems of the action selection space and the difficulty of convergence of traditional proximal policy optimization algorithm in air combat simulation, proximal policy hierarchical optimization algorithm is proposed. The framework of intelligent decision model of air combat based...
Guardado en:
Autor principal: | Wu Yijia, Lai Jun, Chen Xiliang, Cao Lei, Xu Peng |
---|---|
Formato: | article |
Lenguaje: | ZH |
Publicado: |
Editorial Office of Aero Weaponry
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f7cc1baef144ea29add1b321d811e83 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
METHODS OF NEURAL NETWORKS AND DEEP LEARNING ON THE BASIS OF AN INTELLIGENT AGENT
por: A.D. Tulegulov, et al.
Publicado: (2021) -
Cooperative Combat Technology under Mosaic Warfare
por: Guo Jianguo, Zhou Min, Guo Zongyi, Zhou Jun
Publicado: (2021) -
Target Tactical Intention Recognition in Multiaircraft Cooperative Air Combat
por: Meng Guanglei, et al.
Publicado: (2021) -
Influence of Propeller on Electromagnetic Scattering Characteristics for Unmanned Combat Aircraft Vehicle
por: Liu Zhanhe,Miao Nan,Wang Jing,Yang Tao,Zhang Lu
Publicado: (2021) -
The influence of weight on fuel consumption and range for a turboprop medium courier aircraft
por: Marius-Alexandru VOICU, et al.
Publicado: (2021)