Evaluating Convolutional Neural Networks as a Method of EEG–EMG Fusion
Wearable robotic exoskeletons have emerged as an exciting new treatment tool for disorders affecting mobility; however, the human–machine interface, used by the patient for device control, requires further improvement before robotic assistance and rehabilitation can be widely adopted. One method, ma...
Guardado en:
Autores principales: | Jacob Tryon, Ana Luisa Trejos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f82f98056e54f37a83739890c551b55 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Expert committee classifier for hand motions recognition from EMG signals
por: Reyes López,David A., et al.
Publicado: (2018) -
Interference Signal Identification of Sensor Array Based on Convolutional Neural Network and FPGA Implementation
por: Lin Huang, et al.
Publicado: (2021) -
Multispectral Fusion of RGB and NIR Images Using Weighted Least Squares and Convolution Neural Networks
por: Cheolkon Jung, et al.
Publicado: (2021) -
Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review
por: Cristina Brambilla, et al.
Publicado: (2021) -
Finger Gesture Recognition Using Sensing and Classification of Surface Electromyography Signals With High-Precision Wireless Surface Electromyography Sensors
por: Jianting Fu, et al.
Publicado: (2021)