Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine

Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine.

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaodong Yan, Jiahui Ma, Tong Wu, Aoyang Zhang, Jiangbin Wu, Matthew Chin, Zhihan Zhang, Madan Dubey, Wei Wu, Mike Shuo-Wei Chen, Jing Guo, Han Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/9f972e06789b46f28aedffae3abf322b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine.