Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine
Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine.
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f972e06789b46f28aedffae3abf322b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9f972e06789b46f28aedffae3abf322b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9f972e06789b46f28aedffae3abf322b2021-12-02T17:18:17ZReconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine10.1038/s41467-021-26012-52041-1723https://doaj.org/article/9f972e06789b46f28aedffae3abf322b2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26012-5https://doaj.org/toc/2041-1723Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine.Xiaodong YanJiahui MaTong WuAoyang ZhangJiangbin WuMatthew ChinZhihan ZhangMadan DubeyWei WuMike Shuo-Wei ChenJing GuoHan WangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Xiaodong Yan Jiahui Ma Tong Wu Aoyang Zhang Jiangbin Wu Matthew Chin Zhihan Zhang Madan Dubey Wei Wu Mike Shuo-Wei Chen Jing Guo Han Wang Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine |
description |
Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine. |
format |
article |
author |
Xiaodong Yan Jiahui Ma Tong Wu Aoyang Zhang Jiangbin Wu Matthew Chin Zhihan Zhang Madan Dubey Wei Wu Mike Shuo-Wei Chen Jing Guo Han Wang |
author_facet |
Xiaodong Yan Jiahui Ma Tong Wu Aoyang Zhang Jiangbin Wu Matthew Chin Zhihan Zhang Madan Dubey Wei Wu Mike Shuo-Wei Chen Jing Guo Han Wang |
author_sort |
Xiaodong Yan |
title |
Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine |
title_short |
Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine |
title_full |
Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine |
title_fullStr |
Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine |
title_full_unstemmed |
Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine |
title_sort |
reconfigurable stochastic neurons based on tin oxide/mos2 hetero-memristors for simulated annealing and the boltzmann machine |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/9f972e06789b46f28aedffae3abf322b |
work_keys_str_mv |
AT xiaodongyan reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT jiahuima reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT tongwu reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT aoyangzhang reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT jiangbinwu reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT matthewchin reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT zhihanzhang reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT madandubey reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT weiwu reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT mikeshuoweichen reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT jingguo reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine AT hanwang reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine |
_version_ |
1718381160017428480 |