Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine

Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine.

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaodong Yan, Jiahui Ma, Tong Wu, Aoyang Zhang, Jiangbin Wu, Matthew Chin, Zhihan Zhang, Madan Dubey, Wei Wu, Mike Shuo-Wei Chen, Jing Guo, Han Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/9f972e06789b46f28aedffae3abf322b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9f972e06789b46f28aedffae3abf322b
record_format dspace
spelling oai:doaj.org-article:9f972e06789b46f28aedffae3abf322b2021-12-02T17:18:17ZReconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine10.1038/s41467-021-26012-52041-1723https://doaj.org/article/9f972e06789b46f28aedffae3abf322b2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26012-5https://doaj.org/toc/2041-1723Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine.Xiaodong YanJiahui MaTong WuAoyang ZhangJiangbin WuMatthew ChinZhihan ZhangMadan DubeyWei WuMike Shuo-Wei ChenJing GuoHan WangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xiaodong Yan
Jiahui Ma
Tong Wu
Aoyang Zhang
Jiangbin Wu
Matthew Chin
Zhihan Zhang
Madan Dubey
Wei Wu
Mike Shuo-Wei Chen
Jing Guo
Han Wang
Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine
description Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine.
format article
author Xiaodong Yan
Jiahui Ma
Tong Wu
Aoyang Zhang
Jiangbin Wu
Matthew Chin
Zhihan Zhang
Madan Dubey
Wei Wu
Mike Shuo-Wei Chen
Jing Guo
Han Wang
author_facet Xiaodong Yan
Jiahui Ma
Tong Wu
Aoyang Zhang
Jiangbin Wu
Matthew Chin
Zhihan Zhang
Madan Dubey
Wei Wu
Mike Shuo-Wei Chen
Jing Guo
Han Wang
author_sort Xiaodong Yan
title Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine
title_short Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine
title_full Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine
title_fullStr Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine
title_full_unstemmed Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine
title_sort reconfigurable stochastic neurons based on tin oxide/mos2 hetero-memristors for simulated annealing and the boltzmann machine
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9f972e06789b46f28aedffae3abf322b
work_keys_str_mv AT xiaodongyan reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT jiahuima reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT tongwu reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT aoyangzhang reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT jiangbinwu reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT matthewchin reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT zhihanzhang reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT madandubey reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT weiwu reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT mikeshuoweichen reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT jingguo reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
AT hanwang reconfigurablestochasticneuronsbasedontinoxidemos2heteromemristorsforsimulatedannealingandtheboltzmannmachine
_version_ 1718381160017428480