Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine
Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine.
Guardado en:
Autores principales: | Xiaodong Yan, Jiahui Ma, Tong Wu, Aoyang Zhang, Jiangbin Wu, Matthew Chin, Zhihan Zhang, Madan Dubey, Wei Wu, Mike Shuo-Wei Chen, Jing Guo, Han Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f972e06789b46f28aedffae3abf322b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers
por: Guanglei Xu, et al.
Publicado: (2021) -
Halide perovskite memristors as flexible and reconfigurable physical unclonable functions
por: Rohit Abraham John, et al.
Publicado: (2021) -
Seamlessly fused digital-analogue reconfigurable computing using memristors
por: Alexantrou Serb, et al.
Publicado: (2018) -
Biological plausibility and stochasticity in scalable VO2 active memristor neurons
por: Wei Yi, et al.
Publicado: (2018) -
Theory and experimental verification of configurable computing with stochastic memristors
por: Rawan Naous, et al.
Publicado: (2021)