Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters
Unsupervised Domain Adaptation (UDA) for re-identification (re-ID) is a challenging task: to avoid a costly annotation of additional data, it aims at transferring knowledge from a domain with annotated data to a domain of interest with only unlabeled data. Pseudo-labeling approaches have proven to b...
Guardado en:
Autores principales: | Fabian Dubourvieux, Angelique Loesch, Romaric Audigier, Samia Ainouz, Stephane Canu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9f9a58fc2f7844938f3124d1c93c897f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-Tuning Lam Annealing: Learning Hyperparameters While Problem Solving
por: Vincent A. Cicirello
Publicado: (2021) -
Unsupervised Domain Adaptation Network With Category-Centric Prototype Aligner for Biomedical Image Segmentation
por: Ping Gong, et al.
Publicado: (2021) -
Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization
por: Fatihah Rahmadayana, et al.
Publicado: (2021) -
Generalized trace pseudo-spectrum of matrix pencils
por: Ammar,Aymen, et al.
Publicado: (2019) -
Rotation-Invariant and Relation-Aware Cross-Domain Adaptation Object Detection Network for Optical Remote Sensing Images
por: Ying Chen, et al.
Publicado: (2021)