Complex magnetic incommensurability and electronic charge transfer through the ferroelectric transition in multiferroic Co3TeO6

Abstract Polarized and unpolarized neutron diffractions have been carried out to investigate the nature of the magnetic structures and transitions in monoclinic Co3TeO6. As the temperature is lowered below 26 K long range order develops, which is fully incommensurate (ICM) in all three crystallograp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chi-Hung Lee, Chin-Wei Wang, Yang Zhao, Wen-Hsien Li, Jeffrey W. Lynn, A. Brooks Harris, Kirrily Rule, Hung-Duen Yang, Helmuth Berger
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9fa07b057b2f4cc980468d87109ca191
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Polarized and unpolarized neutron diffractions have been carried out to investigate the nature of the magnetic structures and transitions in monoclinic Co3TeO6. As the temperature is lowered below 26 K long range order develops, which is fully incommensurate (ICM) in all three crystallographic directions. Below 19.5 K additional commensurate magnetic peaks develop, consistent with the Γ4 irreducible representation, along with a splitting of the ICM peaks along the h direction which indicates that there are two separate sets of magnetic modulation vectors. Below 18 K, this small additional magnetic incommensurability disappears, ferroelectricity develops, an additional commensurate magnetic structure consistent with Γ3 irreducible representation appears, and the k component of the ICM wave vector disappears. Synchrotron x-ray diffraction measurements demonstrate that there is a significant shift of the electronic charge distribution from the Te ions at the crystallographic 8 f sites to the neighboring Co and O ions. These results, together with the unusually small electric polarization, its strong magnetic field dependence, and the negative thermal expansion in all three lattice parameters, suggest this material is an antiferroelectric. Below15 K the k component of the ICM structure reappears, along with second-order ICM Bragg peaks, which polarized neutron data demonstrate are magnetic in origin.