Understanding inherent image features in CNN-based assessment of diabetic retinopathy
Abstract Diabetic retinopathy (DR) is a leading cause of blindness and affects millions of people throughout the world. Early detection and timely checkups are key to reduce the risk of blindness. Automated grading of DR is a cost-effective way to ensure early detection and timely checkups. Deep lea...
Guardado en:
Autores principales: | Roc Reguant, Søren Brunak, Sajib Saha |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9fba7cc53af54f118f3f3f3889663b8b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hybrid CNN-SVD Based Prominent Feature Extraction and Selection for Grading Diabetic Retinopathy Using Extreme Learning Machine Algorithm
por: Md. Nahiduzzaman, et al.
Publicado: (2021) -
Nuclear atypia grading in breast cancer histopathological images based on CNN feature extraction and LSTM classification
por: Sanaz Karimi Jafarbigloo, et al.
Publicado: (2021) -
Fish Segmentation in Sonar Images by Mask R-CNN on Feature Maps of Conditional Random Fields
por: Chin-Chun Chang, et al.
Publicado: (2021) -
Features of proliferative process in patients with diabetic retinopathy
por: Dmitriy Valentinovich Lipatov, et al.
Publicado: (2012) -
Key factors in a rigorous longitudinal image-based assessment of retinopathy of prematurity
por: Tatiana R. Rosenblatt, et al.
Publicado: (2021)