Model-Based Observer Design Considering Unequal Measurement Delays
State observers are essential components of a modern control system. It is often designed based on a mathematical model of the process, thus requiring detailed process knowledge. However, in the existing state estimation methods, equal delays are commonly assumed for all communication lines, which i...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9fc3f5bda30a44d988b42b282f4fa9cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | State observers are essential components of a modern control system. It is often designed based on a mathematical model of the process, thus requiring detailed process knowledge. However, in the existing state estimation methods, equal delays are commonly assumed for all communication lines, which is unrealistic and poses problems such as instability and a degraded performance of observers when unequal time delays exist. In this paper, a design of observers considering the measurement delays is presented. To deal with this problem, a chain-based observer has been proposed in which each chain deals with one output delay, performs prediction for the unavailable output value, and passes it to the next chain. Convergence of each chain observer as well as overall state estimation were proven. To illustrate the performance of the proposed scheme, simulation studies were performed on a benchmark continuous stirred tank heater (CSTH) process. |
---|