Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets

Abstract Rational design of technologically important exotic perovskites is hampered by the insufficient geometrical descriptors and costly and extremely high-pressure synthesis, while the big-data driven compositional identification and precise prediction entangles full understanding of the possibl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yifeng Han, Meixia Wu, Churen Gui, Chuanhui Zhu, Zhongxiong Sun, Mei-Huan Zhao, Aleksandra A. Savina, Artem M. Abakumov, Biao Wang, Feng Huang, LunHua He, Jie Chen, Qingzhen Huang, Mark Croft, Steven Ehrlich, Syed Khalid, Zheng Deng, Changqing Jin, Christoph P. Grams, Joachim Hemberger, Xueyun Wang, Jiawang Hong, Umut Adem, Meng Ye, Shuai Dong, Man-Rong Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/9fd7756e0a2243eca6471c1fc39dba76
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9fd7756e0a2243eca6471c1fc39dba76
record_format dspace
spelling oai:doaj.org-article:9fd7756e0a2243eca6471c1fc39dba762021-12-02T13:42:09ZData-driven computational prediction and experimental realization of exotic perovskite-related polar magnets10.1038/s41535-020-00294-22397-4648https://doaj.org/article/9fd7756e0a2243eca6471c1fc39dba762020-12-01T00:00:00Zhttps://doi.org/10.1038/s41535-020-00294-2https://doaj.org/toc/2397-4648Abstract Rational design of technologically important exotic perovskites is hampered by the insufficient geometrical descriptors and costly and extremely high-pressure synthesis, while the big-data driven compositional identification and precise prediction entangles full understanding of the possible polymorphs and complicated multidimensional calculations of the chemical and thermodynamic parameter space. Here we present a rapid systematic data-mining-driven approach to design exotic perovskites in a high-throughput and discovery speed of the A 2 BB’O6 family as exemplified in A 3TeO6. The magnetoelectric polar magnet Co3TeO6, which is theoretically recognized and experimentally realized at 5 GPa from the six possible polymorphs, undergoes two magnetic transitions at 24 and 58 K and exhibits helical spin structure accompanied by magnetoelastic and magnetoelectric coupling. We expect the applied approach will accelerate the systematic and rapid discovery of new exotic perovskites in a high-throughput manner and can be extended to arbitrary applications in other families.Yifeng HanMeixia WuChuren GuiChuanhui ZhuZhongxiong SunMei-Huan ZhaoAleksandra A. SavinaArtem M. AbakumovBiao WangFeng HuangLunHua HeJie ChenQingzhen HuangMark CroftSteven EhrlichSyed KhalidZheng DengChangqing JinChristoph P. GramsJoachim HembergerXueyun WangJiawang HongUmut AdemMeng YeShuai DongMan-Rong LiNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 5, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
Yifeng Han
Meixia Wu
Churen Gui
Chuanhui Zhu
Zhongxiong Sun
Mei-Huan Zhao
Aleksandra A. Savina
Artem M. Abakumov
Biao Wang
Feng Huang
LunHua He
Jie Chen
Qingzhen Huang
Mark Croft
Steven Ehrlich
Syed Khalid
Zheng Deng
Changqing Jin
Christoph P. Grams
Joachim Hemberger
Xueyun Wang
Jiawang Hong
Umut Adem
Meng Ye
Shuai Dong
Man-Rong Li
Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets
description Abstract Rational design of technologically important exotic perovskites is hampered by the insufficient geometrical descriptors and costly and extremely high-pressure synthesis, while the big-data driven compositional identification and precise prediction entangles full understanding of the possible polymorphs and complicated multidimensional calculations of the chemical and thermodynamic parameter space. Here we present a rapid systematic data-mining-driven approach to design exotic perovskites in a high-throughput and discovery speed of the A 2 BB’O6 family as exemplified in A 3TeO6. The magnetoelectric polar magnet Co3TeO6, which is theoretically recognized and experimentally realized at 5 GPa from the six possible polymorphs, undergoes two magnetic transitions at 24 and 58 K and exhibits helical spin structure accompanied by magnetoelastic and magnetoelectric coupling. We expect the applied approach will accelerate the systematic and rapid discovery of new exotic perovskites in a high-throughput manner and can be extended to arbitrary applications in other families.
format article
author Yifeng Han
Meixia Wu
Churen Gui
Chuanhui Zhu
Zhongxiong Sun
Mei-Huan Zhao
Aleksandra A. Savina
Artem M. Abakumov
Biao Wang
Feng Huang
LunHua He
Jie Chen
Qingzhen Huang
Mark Croft
Steven Ehrlich
Syed Khalid
Zheng Deng
Changqing Jin
Christoph P. Grams
Joachim Hemberger
Xueyun Wang
Jiawang Hong
Umut Adem
Meng Ye
Shuai Dong
Man-Rong Li
author_facet Yifeng Han
Meixia Wu
Churen Gui
Chuanhui Zhu
Zhongxiong Sun
Mei-Huan Zhao
Aleksandra A. Savina
Artem M. Abakumov
Biao Wang
Feng Huang
LunHua He
Jie Chen
Qingzhen Huang
Mark Croft
Steven Ehrlich
Syed Khalid
Zheng Deng
Changqing Jin
Christoph P. Grams
Joachim Hemberger
Xueyun Wang
Jiawang Hong
Umut Adem
Meng Ye
Shuai Dong
Man-Rong Li
author_sort Yifeng Han
title Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets
title_short Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets
title_full Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets
title_fullStr Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets
title_full_unstemmed Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets
title_sort data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/9fd7756e0a2243eca6471c1fc39dba76
work_keys_str_mv AT yifenghan datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT meixiawu datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT churengui datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT chuanhuizhu datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT zhongxiongsun datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT meihuanzhao datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT aleksandraasavina datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT artemmabakumov datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT biaowang datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT fenghuang datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT lunhuahe datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT jiechen datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT qingzhenhuang datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT markcroft datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT stevenehrlich datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT syedkhalid datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT zhengdeng datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT changqingjin datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT christophpgrams datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT joachimhemberger datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT xueyunwang datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT jiawanghong datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT umutadem datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT mengye datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT shuaidong datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
AT manrongli datadrivencomputationalpredictionandexperimentalrealizationofexoticperovskiterelatedpolarmagnets
_version_ 1718392571506458624