A Semantic Segmentation Method for Early Forest Fire Smoke Based on Concentration Weighting
Forest fire smoke detection based on deep learning has been widely studied. Labeling the smoke image is a necessity when building datasets of target detection and semantic segmentation. The uncertainty in labeling the forest fire smoke pixels caused by the non-uniform diffusion of smoke particles wi...
Guardado en:
Autores principales: | Zewei Wang, Change Zheng, Jiyan Yin, Ye Tian, Wenbin Cui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9fd81efbf5e346bba6d1a0b03d23ede1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Slurs: At-issueness and Semantic Normativity
por: Simone Carrus
Publicado: (2017) -
Linear smoke detectors in fire protection
por: Jevtić Radoje B.
Publicado: (2021) -
The effect of heat and smoke on the emergence of exotic and native seedlings in a Mediterranean fire-free matorral of central Chile
por: FIGUEROA,JAVIER A, et al.
Publicado: (2012) -
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
por: Bruch Roman, et al.
Publicado: (2020) -
Influence of Light Wavelengths on Visibility in Smoke during a Tunnel Fire
por: Natalia Koch, et al.
Publicado: (2021)