Prediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research

Abstract Background There has been a rapid growth in the publication of new prediction models relevant to child and adolescent mental health. However, before their implementation into clinical services, it is necessary to appraise the quality of their methods and reporting. We conducted a systematic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Morwenna Senior, Thomas Fanshawe, Mina Fazel, Seena Fazel
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/9febc94f1a484c87b3c06bdea1067cdf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9febc94f1a484c87b3c06bdea1067cdf
record_format dspace
spelling oai:doaj.org-article:9febc94f1a484c87b3c06bdea1067cdf2021-11-23T06:05:44ZPrediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research2692-938410.1002/jcv2.12034https://doaj.org/article/9febc94f1a484c87b3c06bdea1067cdf2021-10-01T00:00:00Zhttps://doi.org/10.1002/jcv2.12034https://doaj.org/toc/2692-9384Abstract Background There has been a rapid growth in the publication of new prediction models relevant to child and adolescent mental health. However, before their implementation into clinical services, it is necessary to appraise the quality of their methods and reporting. We conducted a systematic review of new prediction models in child and adolescent mental health, and examined their development and validation. Method We searched five databases for studies developing or validating multivariable prediction models for individuals aged 18 years old or younger from 1 January 2018 to 18 February 2021. Quality of reporting was assessed using the Transparent Reporting of a multivariable prediction models for Individual Prognosis Or Diagnosis checklist, and quality of methodology using items based on expert guidance and the PROBAST tool. Results We identified 100 eligible studies: 41 developing a new prediction model, 48 validating an existing model and 11 that included both development and validation. Most publications (k = 75) reported a model discrimination measure, while 26 investigations reported calibration. Of 52 new prediction models, six (12%) were for suicidal outcomes, 18 (35%) for future diagnosis, five (10%) for child maltreatment. Other outcomes included violence, crime, and functional outcomes. Eleven new models (21%) were developed for use in high‐risk populations. Of development studies, around a third were sufficiently statistically powered (k = 16%, 31%), while this was lower for validation investigations (k = 12, 25%). In terms of performance, the discrimination (as measured by the C‐statistic) for new models ranged from 0.57 for a tool predicting ADHD diagnosis in an external validation sample to 0.99 for a machine learning model predicting foster care permanency. Conclusions Although some tools have recently been developed for child and adolescent mental health for prognosis and child maltreatment, none can be currently recommended for clinical practice due to a combination of methodological limitations and poor model performance. New work needs to use ensure sufficient sample sizes, representative samples, and testing of model calibration.Morwenna SeniorThomas FanshaweMina FazelSeena FazelWileyarticlechild protectionjusticemultivariable modelsrisk assessmentrisk predictionself‐harmPediatricsRJ1-570PsychiatryRC435-571ENJCPP Advances, Vol 1, Iss 3, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic child protection
justice
multivariable models
risk assessment
risk prediction
self‐harm
Pediatrics
RJ1-570
Psychiatry
RC435-571
spellingShingle child protection
justice
multivariable models
risk assessment
risk prediction
self‐harm
Pediatrics
RJ1-570
Psychiatry
RC435-571
Morwenna Senior
Thomas Fanshawe
Mina Fazel
Seena Fazel
Prediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research
description Abstract Background There has been a rapid growth in the publication of new prediction models relevant to child and adolescent mental health. However, before their implementation into clinical services, it is necessary to appraise the quality of their methods and reporting. We conducted a systematic review of new prediction models in child and adolescent mental health, and examined their development and validation. Method We searched five databases for studies developing or validating multivariable prediction models for individuals aged 18 years old or younger from 1 January 2018 to 18 February 2021. Quality of reporting was assessed using the Transparent Reporting of a multivariable prediction models for Individual Prognosis Or Diagnosis checklist, and quality of methodology using items based on expert guidance and the PROBAST tool. Results We identified 100 eligible studies: 41 developing a new prediction model, 48 validating an existing model and 11 that included both development and validation. Most publications (k = 75) reported a model discrimination measure, while 26 investigations reported calibration. Of 52 new prediction models, six (12%) were for suicidal outcomes, 18 (35%) for future diagnosis, five (10%) for child maltreatment. Other outcomes included violence, crime, and functional outcomes. Eleven new models (21%) were developed for use in high‐risk populations. Of development studies, around a third were sufficiently statistically powered (k = 16%, 31%), while this was lower for validation investigations (k = 12, 25%). In terms of performance, the discrimination (as measured by the C‐statistic) for new models ranged from 0.57 for a tool predicting ADHD diagnosis in an external validation sample to 0.99 for a machine learning model predicting foster care permanency. Conclusions Although some tools have recently been developed for child and adolescent mental health for prognosis and child maltreatment, none can be currently recommended for clinical practice due to a combination of methodological limitations and poor model performance. New work needs to use ensure sufficient sample sizes, representative samples, and testing of model calibration.
format article
author Morwenna Senior
Thomas Fanshawe
Mina Fazel
Seena Fazel
author_facet Morwenna Senior
Thomas Fanshawe
Mina Fazel
Seena Fazel
author_sort Morwenna Senior
title Prediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research
title_short Prediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research
title_full Prediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research
title_fullStr Prediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research
title_full_unstemmed Prediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research
title_sort prediction models for child and adolescent mental health: a systematic review of methodology and reporting in recent research
publisher Wiley
publishDate 2021
url https://doaj.org/article/9febc94f1a484c87b3c06bdea1067cdf
work_keys_str_mv AT morwennasenior predictionmodelsforchildandadolescentmentalhealthasystematicreviewofmethodologyandreportinginrecentresearch
AT thomasfanshawe predictionmodelsforchildandadolescentmentalhealthasystematicreviewofmethodologyandreportinginrecentresearch
AT minafazel predictionmodelsforchildandadolescentmentalhealthasystematicreviewofmethodologyandreportinginrecentresearch
AT seenafazel predictionmodelsforchildandadolescentmentalhealthasystematicreviewofmethodologyandreportinginrecentresearch
_version_ 1718417337306054656