Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation
Fang Yang1,4, Jinfeng Zeng1,4, Wei Zhang2, Xi Sun3, Junqi Ling11Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; 2National Neuroscience Institute, Singapore; 3School of B...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a008280d78b144eb902cec7237a3c783 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a008280d78b144eb902cec7237a3c783 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a008280d78b144eb902cec7237a3c7832021-12-02T03:05:14ZEvaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation1176-91141178-2013https://doaj.org/article/a008280d78b144eb902cec7237a3c7832010-12-01T00:00:00Zhttp://www.dovepress.com/evaluation-of-the-interaction-between-calcifying-nanoparticles-and-hum-a5910https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Fang Yang1,4, Jinfeng Zeng1,4, Wei Zhang2, Xi Sun3, Junqi Ling11Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; 2National Neuroscience Institute, Singapore; 3School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, China; 4These authors contributed equally to this workAbstract: Calcifying nanoparticles (CNPs, previously called nanobacteria) are self-propagating, cultivable macromolecular complexes. Their extraordinary characteristic is that they can aggregate carbonate apatite on their envelope from soluble calcium and phosphorus at physiologic concentrations and display cytotoxic effects on murine and human fibroblast cell lines. The question arises whether CNPs contribute to the degeneration of pulp tissue and thus result in clinically significant human dental pulp stones as nidies. This study evaluates CNPs' effects upon human dental pulp cells (HDPCs, the host cells in pulp tissue). We observed the ultrastructural variation of HDPCs attacked by CNPs. The spatial relationship of HDPCs and CNPs after coculture was also identified by immunofluroscence staining. Furthermore, it was verified by MTT viability assay that CNPs isolated from dental pulp stones exerted cytotoxic effect on HDPCs. Therefore, it could be concluded that the existence of CNPs might interfere with the normal physiologic function of the cells, and that might lead to dental pulp calcification. Elucidation of the cytotoxic characteristics of CNPs may offer a new perspective for understanding the etiology of human dental pulp stones.Keywords: calcifying nanoparticles, nanobacteria, human dental pulp cells Fang YangJinfeng ZengWei Zhanget alDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2011, Iss default, Pp 13-18 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Fang Yang Jinfeng Zeng Wei Zhang et al Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation |
description |
Fang Yang1,4, Jinfeng Zeng1,4, Wei Zhang2, Xi Sun3, Junqi Ling11Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; 2National Neuroscience Institute, Singapore; 3School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, China; 4These authors contributed equally to this workAbstract: Calcifying nanoparticles (CNPs, previously called nanobacteria) are self-propagating, cultivable macromolecular complexes. Their extraordinary characteristic is that they can aggregate carbonate apatite on their envelope from soluble calcium and phosphorus at physiologic concentrations and display cytotoxic effects on murine and human fibroblast cell lines. The question arises whether CNPs contribute to the degeneration of pulp tissue and thus result in clinically significant human dental pulp stones as nidies. This study evaluates CNPs' effects upon human dental pulp cells (HDPCs, the host cells in pulp tissue). We observed the ultrastructural variation of HDPCs attacked by CNPs. The spatial relationship of HDPCs and CNPs after coculture was also identified by immunofluroscence staining. Furthermore, it was verified by MTT viability assay that CNPs isolated from dental pulp stones exerted cytotoxic effect on HDPCs. Therefore, it could be concluded that the existence of CNPs might interfere with the normal physiologic function of the cells, and that might lead to dental pulp calcification. Elucidation of the cytotoxic characteristics of CNPs may offer a new perspective for understanding the etiology of human dental pulp stones.Keywords: calcifying nanoparticles, nanobacteria, human dental pulp cells |
format |
article |
author |
Fang Yang Jinfeng Zeng Wei Zhang et al |
author_facet |
Fang Yang Jinfeng Zeng Wei Zhang et al |
author_sort |
Fang Yang |
title |
Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation |
title_short |
Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation |
title_full |
Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation |
title_fullStr |
Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation |
title_full_unstemmed |
Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation |
title_sort |
evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation |
publisher |
Dove Medical Press |
publishDate |
2010 |
url |
https://doaj.org/article/a008280d78b144eb902cec7237a3c783 |
work_keys_str_mv |
AT fangyang evaluationoftheinteractionbetweencalcifyingnanoparticlesandhumandentalpulpcellsapreliminaryinvestigation AT jinfengzeng evaluationoftheinteractionbetweencalcifyingnanoparticlesandhumandentalpulpcellsapreliminaryinvestigation AT weizhang evaluationoftheinteractionbetweencalcifyingnanoparticlesandhumandentalpulpcellsapreliminaryinvestigation AT etal evaluationoftheinteractionbetweencalcifyingnanoparticlesandhumandentalpulpcellsapreliminaryinvestigation |
_version_ |
1718401999056142336 |