A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms
Short-term residential load forecasting is the precondition of the day-ahead and intra-day scheduling strategy of the household microgrid. Existing short-term electric load forecasting methods are mainly used to obtain regional power load for system-level power dispatch. Due to the high volatility,...
Guardado en:
Autores principales: | Tingting Hou, Rengcun Fang, Jinrui Tang, Ganheng Ge, Dongjun Yang, Jianchao Liu, Wei Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a015620b0ec74e34a959f7ffd4724756 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis for Non-Residential Short-Term Load Forecasting Using Machine Learning and Statistical Methods with Financial Impact on the Power Market
por: Stefan Ungureanu, et al.
Publicado: (2021) -
Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels
por: Leonard Burg, et al.
Publicado: (2021) -
Probabilistic Short-Term Load Forecasting Incorporating Behind-the-Meter (BTM) Photovoltaic (PV) Generation and Battery Energy Storage Systems (BESSs)
por: Ji-Won Cha, et al.
Publicado: (2021) -
Novel Single Group-Based Indirect Customer Baseline Load Calculation Method for Residential Demand Response
por: Hyunyong Lee, et al.
Publicado: (2021) -
An Assessment of Heating Load Reduction by a Solar Air Heater in a Residential Passive Ventilation System
por: Junichiro Matsunaga, et al.
Publicado: (2021)