Post-interval EEG activity is related to task-goals in temporal discrimination.

Studies investigating the neural mechanisms of time perception often measure brain activity while participants perform a temporal task. However, several of these studies are based exclusively on tasks in which time is relevant, making it hard to dissociate activity related to decisions about time fr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fernanda Dantas Bueno, André Mascioli Cravo
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a0157093327a47e79e6ad4212cbdad75
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Studies investigating the neural mechanisms of time perception often measure brain activity while participants perform a temporal task. However, several of these studies are based exclusively on tasks in which time is relevant, making it hard to dissociate activity related to decisions about time from other task-related patterns. In the present study, human participants performed a temporal or color discrimination task of visual stimuli. Participants were informed which magnitude they would have to judge before or after presenting the two stimuli (S1 and S2) in different blocks. Our behavioral results showed, as expected, that performance was better when participants knew beforehand which magnitude they would judge. Electrophysiological data (EEG) was analysed using Linear Discriminant Contrasts (LDC) and a Representational Similarity Analysis (RSA) approach to investigate whether and when information about time and color was encoded. During the presentation of S1, we did not find consistent differences in EEG activity as a function of the task. On the other hand, during S2, we found that temporal and color information was encoded in a task-relevant manner. Taken together, our results suggest that task goals strongly modulate decision-related information in EEG activity.