Reinforcement learning on slow features of high-dimensional input streams.
Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas...
Guardado en:
Autores principales: | Robert Legenstein, Niko Wilbert, Laurenz Wiskott |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a018376e604147de8c414935b23d132b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Slow feature analysis on retinal waves leads to V1 complex cells.
por: Sven Dähne, et al.
Publicado: (2014) -
The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input.
por: Peter A Appleby, et al.
Publicado: (2011) -
Context-dependent extinction learning emerging from raw sensory inputs: a reinforcement learning approach
por: Thomas Walther, et al.
Publicado: (2021) -
Language statistical learning responds to reinforcement learning principles rooted in the striatum.
por: Joan Orpella, et al.
Publicado: (2021) -
Modeling changes in probabilistic reinforcement learning during adolescence.
por: Liyu Xia, et al.
Publicado: (2021)