Classification of age-related macular degeneration using convolutional-neural-network-based transfer learning
Abstract Background To diagnose key pathologies of age-related macular degeneration (AMD) and diabetic macular edema (DME) quickly and accurately, researchers attempted to develop effective artificial intelligence methods by using medical images. Results A convolutional neural network (CNN) with tra...
Guardado en:
Autores principales: | Yao-Mei Chen, Wei-Tai Huang, Wen-Hsien Ho, Jinn-Tsong Tsai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a01fd1b1d46344ebb6d02656c7e3979e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Artificial intelligence classification model for macular degeneration images: a robust optimization framework for residual neural networks
por: Wen-Hsien Ho, et al.
Publicado: (2021) -
Classifying chest CT images as COVID-19 positive/negative using a convolutional neural network ensemble model and uniform experimental design method
por: Yao-Mei Chen, et al.
Publicado: (2021) -
Agreement of swept-source and spectral-domain optical coherence-tomography retinal thickness measurements in neovascular age-related macular degeneration
por: Hanumunthadu D, et al.
Publicado: (2017) -
Macular morphology and response to ranibizumab treatment in patients with wet age-related macular degeneration
por: Dervenis N, et al.
Publicado: (2016) -
Response of eyes with age-related macular degeneration to anti-VEGF drugs and implications for therapy planning
por: Miyamoto N, et al.
Publicado: (2017)