Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network.
The advancement of Industry 4.0 and Industrial Internet of Things (IIoT) has laid more emphasis on reducing the parameter amount and storage space of the model in addition to the automatic and accurate fault diagnosis. In this case, this paper proposes a lightweight convolutional neural network (LCN...
Enregistré dans:
Auteurs principaux: | Jing Yan, Tingliang Liu, Xinyu Ye, Qianzhen Jing, Yuannan Dai |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a03543f87a544c40b1e2f7391fcfb6ba |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Research on vibration monitoring and fault diagnosis of rotating machinery based on internet of things technology
par: Zhang Xiaoran, et autres
Publié: (2021) -
Intelligent Fault Diagnosis of Bearing Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
par: Dazhang You, et autres
Publié: (2021) -
Contactless Multispectral Palm-Vein Recognition With Lightweight Convolutional Neural Network
par: Yung-Yao Chen, et autres
Publié: (2021) -
A Simultaneous Fault Diagnosis Method Based on Cohesion Evaluation and Improved BP-MLL for Rotating Machinery
par: Yixuan Zhang, et autres
Publié: (2021) -
Application of Convolutional Neural Network in Fault Line Selection of Distribution Network
par: Jingjing Tian, et autres
Publié: (2021)