Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network.
The advancement of Industry 4.0 and Industrial Internet of Things (IIoT) has laid more emphasis on reducing the parameter amount and storage space of the model in addition to the automatic and accurate fault diagnosis. In this case, this paper proposes a lightweight convolutional neural network (LCN...
Guardado en:
Autores principales: | Jing Yan, Tingliang Liu, Xinyu Ye, Qianzhen Jing, Yuannan Dai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a03543f87a544c40b1e2f7391fcfb6ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research on vibration monitoring and fault diagnosis of rotating machinery based on internet of things technology
por: Zhang Xiaoran, et al.
Publicado: (2021) -
Intelligent Fault Diagnosis of Bearing Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
por: Dazhang You, et al.
Publicado: (2021) -
Contactless Multispectral Palm-Vein Recognition With Lightweight Convolutional Neural Network
por: Yung-Yao Chen, et al.
Publicado: (2021) -
A Simultaneous Fault Diagnosis Method Based on Cohesion Evaluation and Improved BP-MLL for Rotating Machinery
por: Yixuan Zhang, et al.
Publicado: (2021) -
Application of Convolutional Neural Network in Fault Line Selection of Distribution Network
por: Jingjing Tian, et al.
Publicado: (2021)