X-ray induced electrostatic graphene doping via defect charging in gate dielectric
Abstract Graphene field effect transistors are becoming an integral part of advanced devices. Hence, the advanced strategies for both characterization and tuning of graphene properties are required. Here we show that the X-ray irradiation at the zero applied gate voltage causes very strong negative...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a04583c45dcc4ddbad533584f3096b37 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a04583c45dcc4ddbad533584f3096b37 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a04583c45dcc4ddbad533584f3096b372021-12-02T12:30:44ZX-ray induced electrostatic graphene doping via defect charging in gate dielectric10.1038/s41598-017-00673-z2045-2322https://doaj.org/article/a04583c45dcc4ddbad533584f3096b372017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00673-zhttps://doaj.org/toc/2045-2322Abstract Graphene field effect transistors are becoming an integral part of advanced devices. Hence, the advanced strategies for both characterization and tuning of graphene properties are required. Here we show that the X-ray irradiation at the zero applied gate voltage causes very strong negative doping of graphene, which is explained by X-ray radiation induced charging of defects in the gate dielectric. The induced charge can be neutralized and compensated if the graphene device is irradiated by X-rays at a negative gate voltage. Here the charge neutrality point shifts back to zero voltage. The observed phenomenon has strong implications for interpretation of X-ray based measurements of graphene devices as it renders them to significantly altered state. Our results also form a basis for remote X-ray tuning of graphene transport properties and X-ray sensors comprising the graphene/oxide interface as an active layer.Pavel ProcházkaDavid MarečekZuzana LiškováJan ČechalTomáš ŠikolaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-7 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Pavel Procházka David Mareček Zuzana Lišková Jan Čechal Tomáš Šikola X-ray induced electrostatic graphene doping via defect charging in gate dielectric |
description |
Abstract Graphene field effect transistors are becoming an integral part of advanced devices. Hence, the advanced strategies for both characterization and tuning of graphene properties are required. Here we show that the X-ray irradiation at the zero applied gate voltage causes very strong negative doping of graphene, which is explained by X-ray radiation induced charging of defects in the gate dielectric. The induced charge can be neutralized and compensated if the graphene device is irradiated by X-rays at a negative gate voltage. Here the charge neutrality point shifts back to zero voltage. The observed phenomenon has strong implications for interpretation of X-ray based measurements of graphene devices as it renders them to significantly altered state. Our results also form a basis for remote X-ray tuning of graphene transport properties and X-ray sensors comprising the graphene/oxide interface as an active layer. |
format |
article |
author |
Pavel Procházka David Mareček Zuzana Lišková Jan Čechal Tomáš Šikola |
author_facet |
Pavel Procházka David Mareček Zuzana Lišková Jan Čechal Tomáš Šikola |
author_sort |
Pavel Procházka |
title |
X-ray induced electrostatic graphene doping via defect charging in gate dielectric |
title_short |
X-ray induced electrostatic graphene doping via defect charging in gate dielectric |
title_full |
X-ray induced electrostatic graphene doping via defect charging in gate dielectric |
title_fullStr |
X-ray induced electrostatic graphene doping via defect charging in gate dielectric |
title_full_unstemmed |
X-ray induced electrostatic graphene doping via defect charging in gate dielectric |
title_sort |
x-ray induced electrostatic graphene doping via defect charging in gate dielectric |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/a04583c45dcc4ddbad533584f3096b37 |
work_keys_str_mv |
AT pavelprochazka xrayinducedelectrostaticgraphenedopingviadefectchargingingatedielectric AT davidmarecek xrayinducedelectrostaticgraphenedopingviadefectchargingingatedielectric AT zuzanaliskova xrayinducedelectrostaticgraphenedopingviadefectchargingingatedielectric AT jancechal xrayinducedelectrostaticgraphenedopingviadefectchargingingatedielectric AT tomassikola xrayinducedelectrostaticgraphenedopingviadefectchargingingatedielectric |
_version_ |
1718394352000040960 |