Numerical uncertainty in analytical pipelines lead to impactful variability in brain networks.
The analysis of brain-imaging data requires complex processing pipelines to support findings on brain function or pathologies. Recent work has shown that variability in analytical decisions, small amounts of noise, or computational environments can lead to substantial differences in the results, end...
Guardado en:
Autores principales: | Gregory Kiar, Yohan Chatelain, Pablo de Oliveira Castro, Eric Petit, Ariel Rokem, Gaël Varoquaux, Bratislav Misic, Alan C Evans, Tristan Glatard |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a057d7bfb45249f0a3577e4a634d7a36 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Numerical uncertainty in analytical pipelines lead to impactful variability in brain networks
por: Gregory Kiar, et al.
Publicado: (2021) -
Analytical Model and Numerical Analysis of Composite Wrap System Applied to Steel Pipeline
por: Djouadi Djahida, et al.
Publicado: (2021) -
Agile analytics to support rapid knowledge pipelines
por: Wade L. Schulz, et al.
Publicado: (2020) -
An Analytical and Numerical Detour for the Riemann Hypothesis
por: Michel Riguidel
Publicado: (2021) -
A numerical study of measurement uncertainties for wave gauges
por: Gustavo Esteves Coelho, et al.
Publicado: (2021)