Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites

Abdullah M Asiri,1 Hadi M Marwani,1 Sher Bahadar Khan,1 Thomas J Webster1,2 1Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Carbon nanof...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Asiri AM, Marwani HM, Khan SB, Webster TJ
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/a05bedf65d46404dac96bafd1b40e080
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a05bedf65d46404dac96bafd1b40e080
record_format dspace
spelling oai:doaj.org-article:a05bedf65d46404dac96bafd1b40e0802021-12-02T05:08:58ZGreater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites1178-2013https://doaj.org/article/a05bedf65d46404dac96bafd1b40e0802014-11-01T00:00:00Zhttp://www.dovepress.com/greater-cardiomyocyte-density-on-aligned-compared-with-random-carbon-n-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Abdullah M Asiri,1 Hadi M Marwani,1 Sher Bahadar Khan,1 Thomas J Webster1,2 1Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Carbon nanofibers (CNFs) randomly embedded in poly(lactic-co-glycolic-acid) (PLGA) composites have recently been shown to promote cardiomyocyte growth when compared with conventional PLGA without CNFs. It was shown then that PLGA:CNF composites were conductive and that conductivity increased as greater amounts of CNFs were added to pure PLGA. Moreover, tensile tests showed that addition of CNFs increased the tensile strength of the PLGA composite to mimic that of natural heart tissue. Most importantly, throughout all cytocompatibility experiments, cardiomyocytes were viable and expressed important biomarkers that were greatest on 50:50 wt% CNF:PLGA composites. The increased selective adsorption of fibronectin and vitronectin (critical proteins that mediate cardiomyocyte function) onto such composites proved to be the mechanism of action. However, the natural myocardium is anisotropic in terms of mechanical and electrical properties, which was not emulated in these prior PLGA:CNF composites. Thus, the aim of this in vitro study was to create and characterize CNFs aligned in PLGA composites (at 50:50 wt%, including their mechanical and electrical properties and cardiomyocyte density), comparing such results with randomly oriented CNFs in PLGA. Specifically, CNFs were added to soluble biodegradable PLGA (50:50 PGA:PLA weight ratio) and aligned by applying a voltage and then allowing the polymer to cure. CNF surface micron patterns (20 µm wide) on PLGA were then fabricated through a mold method to further mimic myocardium anisotropy. The results demonstrated anisotropic mechanical and electrical properties and significantly improved cardiomyocyte density for up to 5 days on CNFs aligned in PLGA compared with being randomly oriented in PLGA. These results indicate that CNFs aligned in PLGA should be further explored for improving cardiomyocyte density, which is necessary in numerous cardiovascular applications. Keywords: cardiomyocytes, poly(lactic-co-glycolic acid), carbon nanofibers, aligned, nanotechnology, anisotropyAsiri AMMarwani HMKhan SBWebster TJDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 5533-5539 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Asiri AM
Marwani HM
Khan SB
Webster TJ
Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
description Abdullah M Asiri,1 Hadi M Marwani,1 Sher Bahadar Khan,1 Thomas J Webster1,2 1Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Carbon nanofibers (CNFs) randomly embedded in poly(lactic-co-glycolic-acid) (PLGA) composites have recently been shown to promote cardiomyocyte growth when compared with conventional PLGA without CNFs. It was shown then that PLGA:CNF composites were conductive and that conductivity increased as greater amounts of CNFs were added to pure PLGA. Moreover, tensile tests showed that addition of CNFs increased the tensile strength of the PLGA composite to mimic that of natural heart tissue. Most importantly, throughout all cytocompatibility experiments, cardiomyocytes were viable and expressed important biomarkers that were greatest on 50:50 wt% CNF:PLGA composites. The increased selective adsorption of fibronectin and vitronectin (critical proteins that mediate cardiomyocyte function) onto such composites proved to be the mechanism of action. However, the natural myocardium is anisotropic in terms of mechanical and electrical properties, which was not emulated in these prior PLGA:CNF composites. Thus, the aim of this in vitro study was to create and characterize CNFs aligned in PLGA composites (at 50:50 wt%, including their mechanical and electrical properties and cardiomyocyte density), comparing such results with randomly oriented CNFs in PLGA. Specifically, CNFs were added to soluble biodegradable PLGA (50:50 PGA:PLA weight ratio) and aligned by applying a voltage and then allowing the polymer to cure. CNF surface micron patterns (20 µm wide) on PLGA were then fabricated through a mold method to further mimic myocardium anisotropy. The results demonstrated anisotropic mechanical and electrical properties and significantly improved cardiomyocyte density for up to 5 days on CNFs aligned in PLGA compared with being randomly oriented in PLGA. These results indicate that CNFs aligned in PLGA should be further explored for improving cardiomyocyte density, which is necessary in numerous cardiovascular applications. Keywords: cardiomyocytes, poly(lactic-co-glycolic acid), carbon nanofibers, aligned, nanotechnology, anisotropy
format article
author Asiri AM
Marwani HM
Khan SB
Webster TJ
author_facet Asiri AM
Marwani HM
Khan SB
Webster TJ
author_sort Asiri AM
title Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
title_short Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
title_full Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
title_fullStr Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
title_full_unstemmed Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
title_sort greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
publisher Dove Medical Press
publishDate 2014
url https://doaj.org/article/a05bedf65d46404dac96bafd1b40e080
work_keys_str_mv AT asiriam greatercardiomyocytedensityonalignedcomparedwithrandomcarbonnanofibersinnbsppolymercomposites
AT marwanihm greatercardiomyocytedensityonalignedcomparedwithrandomcarbonnanofibersinnbsppolymercomposites
AT khansb greatercardiomyocytedensityonalignedcomparedwithrandomcarbonnanofibersinnbsppolymercomposites
AT webstertj greatercardiomyocytedensityonalignedcomparedwithrandomcarbonnanofibersinnbsppolymercomposites
_version_ 1718400610528657408