Comparing deep learning with several typical methods in prediction of assessing chlorophyll-a by remote sensing: a case study in Taihu Lake, China
Chlorophyll-a (Chl-a) is an important index in water quality assessment by remote sensing technology. For the study of Chl-a value measurement in rivers or lakes, there are many classical methods, such as curve fitting, back propagation (BP) neural network and radial basis function (RBF) neural netw...
Guardado en:
Autores principales: | Xiaolan Zhao, Haoli Xu, Zhibin Ding, Daqing Wang, Zhengdong Deng, Yi Wang, Tingfong Wu, Wei Li, Zhao Lu, Guangyuan Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a06c06be6e1f41fbbfd7b6ed7f2b7923 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantitative assessment of water level regime alterations during 1959–2016 caused by Three Gorges Reservoir in the Dongting Lake, China
por: Hongxiang Wang, et al.
Publicado: (2021) -
Water quality in relation to land use in the Junshan Lake watershed and water quality predictions
por: Jiangang Lu, et al.
Publicado: (2021) -
Corrigendum: H2Open Journal 2 (1), 125–136: Nutrient removal using spent coconut husks, Trina Halfhide, Lorale J. Lalgee, Karen Seudat Singh, Joshua Williams, Matthew Sealy, Anton Manoo and Azad Mohammed, doi: 10.2166/h2oj.2019.011
Publicado: (2021) -
Editorial: Important news about this journal
Publicado: (2021) -
Editorial: Integrated water management for enhanced water quality and reuse to create a sustainable future
por: Eldon R. Rene, et al.
Publicado: (2021)