Comparing deep learning with several typical methods in prediction of assessing chlorophyll-a by remote sensing: a case study in Taihu Lake, China

Chlorophyll-a (Chl-a) is an important index in water quality assessment by remote sensing technology. For the study of Chl-a value measurement in rivers or lakes, there are many classical methods, such as curve fitting, back propagation (BP) neural network and radial basis function (RBF) neural netw...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Xiaolan Zhao, Haoli Xu, Zhibin Ding, Daqing Wang, Zhengdong Deng, Yi Wang, Tingfong Wu, Wei Li, Zhao Lu, Guangyuan Wang
Format: article
Langue:EN
Publié: IWA Publishing 2021
Sujets:
Accès en ligne:https://doaj.org/article/a06c06be6e1f41fbbfd7b6ed7f2b7923
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!