Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis.

The role the mammary epithelial circadian clock plays in gland development and lactation is unknown. We hypothesized that mammary epithelial clocks function to regulate mammogenesis and lactogenesis, and propose the core clock transcription factor BMAL1:CLOCK regulates genes that control mammary epi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Theresa Casey, Aridany Suarez-Trujillo, Shelby Cummings, Katelyn Huff, Jennifer Crodian, Ketaki Bhide, Clare Aduwari, Kelsey Teeple, Avi Shamay, Sameer J Mabjeesh, Phillip San Miguel, Jyothi Thimmapuram, Karen Plaut
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a08fea25c39a45f08ea4061d2b3ab467
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a08fea25c39a45f08ea4061d2b3ab467
record_format dspace
spelling oai:doaj.org-article:a08fea25c39a45f08ea4061d2b3ab4672021-12-02T20:14:57ZCore circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis.1932-620310.1371/journal.pone.0248199https://doaj.org/article/a08fea25c39a45f08ea4061d2b3ab4672021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0248199https://doaj.org/toc/1932-6203The role the mammary epithelial circadian clock plays in gland development and lactation is unknown. We hypothesized that mammary epithelial clocks function to regulate mammogenesis and lactogenesis, and propose the core clock transcription factor BMAL1:CLOCK regulates genes that control mammary epithelial development and milk synthesis. Our objective was to identify transcriptional targets of BMAL1 in undifferentiated (UNDIFF) and lactogen differentiated (DIFF) mammary epithelial cells (HC11) using ChIP-seq. Ensembl gene IDs with the nearest transcriptional start site to ChIP-seq peaks were explored as potential targets, and represented 846 protein coding genes common to UNDIFF and DIFF cells and 2773 unique to DIFF samples. Genes with overlapping peaks between samples (1343) enriched cell-cell adhesion, membrane transporters and lipid metabolism categories. To functionally verify targets, an HC11 line with Bmal1 gene knocked out (BMAL1-KO) using CRISPR-CAS was created. BMAL1-KO cultures had lower cell densities over an eight-day growth curve, which was associated with increased (p<0.05) levels of reactive oxygen species and lower expression of superoxide dismutase 3 (Sod3). RT-qPCR analysis also found lower expression of the putative targets, prolactin receptor (Prlr), Ppara, and beta-casein (Csn2). Findings support our hypothesis and highlight potential importance of clock in mammary development and substrate transport.Theresa CaseyAridany Suarez-TrujilloShelby CummingsKatelyn HuffJennifer CrodianKetaki BhideClare AduwariKelsey TeepleAvi ShamaySameer J MabjeeshPhillip San MiguelJyothi ThimmapuramKaren PlautPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0248199 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Theresa Casey
Aridany Suarez-Trujillo
Shelby Cummings
Katelyn Huff
Jennifer Crodian
Ketaki Bhide
Clare Aduwari
Kelsey Teeple
Avi Shamay
Sameer J Mabjeesh
Phillip San Miguel
Jyothi Thimmapuram
Karen Plaut
Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis.
description The role the mammary epithelial circadian clock plays in gland development and lactation is unknown. We hypothesized that mammary epithelial clocks function to regulate mammogenesis and lactogenesis, and propose the core clock transcription factor BMAL1:CLOCK regulates genes that control mammary epithelial development and milk synthesis. Our objective was to identify transcriptional targets of BMAL1 in undifferentiated (UNDIFF) and lactogen differentiated (DIFF) mammary epithelial cells (HC11) using ChIP-seq. Ensembl gene IDs with the nearest transcriptional start site to ChIP-seq peaks were explored as potential targets, and represented 846 protein coding genes common to UNDIFF and DIFF cells and 2773 unique to DIFF samples. Genes with overlapping peaks between samples (1343) enriched cell-cell adhesion, membrane transporters and lipid metabolism categories. To functionally verify targets, an HC11 line with Bmal1 gene knocked out (BMAL1-KO) using CRISPR-CAS was created. BMAL1-KO cultures had lower cell densities over an eight-day growth curve, which was associated with increased (p<0.05) levels of reactive oxygen species and lower expression of superoxide dismutase 3 (Sod3). RT-qPCR analysis also found lower expression of the putative targets, prolactin receptor (Prlr), Ppara, and beta-casein (Csn2). Findings support our hypothesis and highlight potential importance of clock in mammary development and substrate transport.
format article
author Theresa Casey
Aridany Suarez-Trujillo
Shelby Cummings
Katelyn Huff
Jennifer Crodian
Ketaki Bhide
Clare Aduwari
Kelsey Teeple
Avi Shamay
Sameer J Mabjeesh
Phillip San Miguel
Jyothi Thimmapuram
Karen Plaut
author_facet Theresa Casey
Aridany Suarez-Trujillo
Shelby Cummings
Katelyn Huff
Jennifer Crodian
Ketaki Bhide
Clare Aduwari
Kelsey Teeple
Avi Shamay
Sameer J Mabjeesh
Phillip San Miguel
Jyothi Thimmapuram
Karen Plaut
author_sort Theresa Casey
title Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis.
title_short Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis.
title_full Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis.
title_fullStr Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis.
title_full_unstemmed Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis.
title_sort core circadian clock transcription factor bmal1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/a08fea25c39a45f08ea4061d2b3ab467
work_keys_str_mv AT theresacasey corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT aridanysuareztrujillo corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT shelbycummings corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT katelynhuff corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT jennifercrodian corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT ketakibhide corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT clareaduwari corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT kelseyteeple corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT avishamay corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT sameerjmabjeesh corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT phillipsanmiguel corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT jyothithimmapuram corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
AT karenplaut corecircadianclocktranscriptionfactorbmal1regulatesmammaryepithelialcellgrowthdifferentiationandmilkcomponentsynthesis
_version_ 1718374662551896064