Multiple object tracking based on multi‐task learning with strip attention
Abstract Multiple object tracking (MOT) framework based on bifurcate strategy was usually challenged by data association of different model path, which work for object localisation and appearance embedding independently. By incorporating the re‐identification (re‐ID) as appearance embedding model, m...
Guardado en:
Autores principales: | Yaoye Song, Peng Zhang, Wei Huang, Yufei Zha, Tao You, Yanning Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a098874d1fbd491b82c79120db0433c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Learn from Object Counting: Crowd Counting with Meta‐learning
por: Changtong Zan, et al.
Publicado: (2021) -
Multi‐dimensional weighted cross‐attention network in crowded scenes
por: Yefan Xie, et al.
Publicado: (2021) -
Part‐level attention networks for cross‐domain person re‐identification
por: Qun Zhao, et al.
Publicado: (2021) -
CA‐PMG: Channel attention and progressive multi‐granularity training network for fine‐grained visual classification
por: Peipei Zhao, et al.
Publicado: (2021) -
MFP‐Net: Multi‐scale feature pyramid network for crowd counting
por: Tao Lei, et al.
Publicado: (2021)